Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 776-784    DOI: 10.11901/1005.3093.2019.205
ARTICLES Current Issue | Archive | Adv Search |
Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating
XU Long1,2,LIU Fuchun1,2,3(),HAN En-Hou1,2,3
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3. Shenyang Zhongke Engineering Technology Center for Corrosion Control, Shenyang 110016, China
Cite this article: 

XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating. Chinese Journal of Materials Research, 2019, 33(10): 776-784.

Download:  HTML  PDF(6410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zn particles were surface modified with polystyrene sodium sulfonate doped poly3, 4-ethylene dioxythiophene (PSS-PEDOT). The corrosion performance of the as modified Zn powder was investigated by means of immersion test in 3.5%NaCl (mass fraction) solution and scanning electron microscope, of which the corrosion current density was found one order of magnitude smaller than that of the blank Zn powder. Then, the anticorrosion performance of the coating composed of acrylic resin incorporated with the modified Zn powder was characterized by means of salt spray test and electrochemical impedance spectroscope. It follows that less corrosion of Zn particles on the coating surface was observed and the cathodic protection duration of the coating was prolonged by 20% in contrast with the one incorporated with blank Zn powder. The increased corrosion resistance of Zn particles and enhanced electrical connections that decreased the Zn reactivity was proposed as the possible mechanism of the improved anticorrosion performance of the coating incorporated with modified Zn powder.

Key words:  material failure and protection      cold galvanizing coating      EIS      surface modification      conductive polymer     
Received:  20 April 2019     
ZTFLH:  TQ630  
Fund: Science and Technology Planning Project of Shenyang(Y17-1-039)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.205     OR     https://www.cjmr.org/EN/Y2019/V33/I10/776

Fig.1  Micrographs and EDS analysis of zinc powders (a) unmodified and (b) modified with PEDOT: PSS
Fig.2  (a, b) digital photos and (c, d) SEM images of zinc particles (a, c) unmodified and (b, d) modified with PEDOT: PSS after 5 d immersion in 3.5% NaCl solution
Fig.3  SVET results of the coatings with (a) unmodified and (b) modified zinc powders after 0.5 h immersion in 3.5% NaCl solution
Fig.4  Digital photos and micrographs of the samples after 2000 h salt spray test, (a) and (d) digital photos of samples, (b) and (c) top view and cross sectional view of sample without modification, (e) and (f) top view and cross sectional view of sample modified with PEDOT: PSS
Fig.5  Variations of corrosion potentials of the coatings during immersion in 3.5% NaCl solution
Fig.6  Nyquist and Bode plots of (a) the unmodified zinc coating and (b) modified zinc coating after immersion for different time in 3.5% NaCl solution
Fig.7  Equivalent circuits used for simulation, Rs: resistance of solution, Cc: coating capacitance, Rc: coating resistance, Rt: reaction resistance of zinc, Cdl: double layer capacitance
Fig.8  Evolutions of the fitted values of various electrochemical parameters (a) coating resistance, (b) coating capacitance, (c) reaction resistance of zinc, (d) double layer capacitance
[1] Wei Y, Li R L. Progress of zinc-rich coatings [J]. Coat. Technol. Abstr., 2008, 29(6): 6
[1] 魏 勇, 李瑞玲. 富锌涂料的研究进展 [J]. 涂料技术与文摘, 2008, 29(6): 6
[2] Li J G. Application of inorganic zinc-rich coatings [J]. Ant. Insul. Technol., 2005, 14: 22
[2] 李金桂. 无机富锌涂层的诞生和应用 [J]. 防腐保温技术, 2005, 14: 22
[3] Sun H Y, Han Z K, Ren H W, et al. Application of water-borne fluorovesin coatings to steel structure of bridge [J]. Corros. Prot., 2010, 31: 455
[3] 孙红尧, 韩忠奎, 任红伟等. 水性氟树脂涂料在桥梁钢结构上的应用 [J]. 腐蚀与防护, 2010, 31: 455
[4] Bastos A C, Zheludkevich M L, Klüppel I, et al. Modification of zinc powder to improve the corrosion resistance of weldable primers [J]. Prog. Org. Coat., 2010, 69: 184
[5] Marchebois H, Touzain S, Joiret S, et al. Zinc-rich powder coatings corrosion in sea water: influence of conductive pigments [J]. Prog. Org. Coat., 2002, 45: 415
[6] Yang Y, Xiao S B, Che Y C, et al. Application status and development trend of cold sprayed zinc coatings [J]. Electroplat. Finish., 2015, 34: 1293
[6] 杨 焰, 肖邵博, 车轶材等. 冷涂锌涂料的应用现状及发展趋势 [J]. 电镀与涂饰, 2015, 34: 1293
[7] Li M F. Performance and application of cold zinc coating [J]. Electroplat. Finish., 2014, 33: 788
[7] 李敏风. 冷涂锌的性能和应用 [J]. 电镀与涂饰, 2014, 33: 788
[8] Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
[9] Park J H, Yun T H, Kim K Y ,et al. The improvement of anticorrosion properties of zinc-rich organic coating by incorporating surface-modified zinc particle [J]. Prog. Org. Coat., 2012, 74: 25
[10] Yun T H, Park J H, Kim J S ,et al. Effect of the surface modification of zinc powders with organosilanes on the corrosion resistance of a zinc pigmented organic coating [J]. Prog. Org. Coat., 2014, 77: 1780
[11] Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity [J]. Prog. Org. Coat., 2008, 63: 282
[12] Elschner A, Kirchmeyer S, Lovenich W, et al. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer [M]. Boca Raton: CRC Press, 2010
[13] Zhang G B, Yao B L, Qi J P ,et al. Preparation of secondary doped PEDOT/G-PSA dispersion and its application in waterborne conductive coating [J]. Paint Coat. Ind., 2015, 45(9): 1
[13] 张国标, 姚伯龙, 齐家鹏等. 二次掺杂聚3, 4-乙撑二氧噻吩分散体的制备及其在水性导电涂料中的应用 [J]. 涂料工业, 2015, 45(9): 1
[14] Huang D Q, Huang J, Ha E H ,et al. Preparing carbon nanotubes capsulated with poly(3, 4-ethylenedioxythiophene) by in-situ polymerization [J]. J. Mater. Eng., 2008, (5): 13
[14] 黄大庆, 黄 俊, 哈恩华等. 聚3, 4一乙二氧噻吩包覆碳纳米管的原位化学氧化合成 [J]. 材料工程, 2008, (5): 13
[15] Wu X X, Li F S, Wu W ,et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film [J]. Chin. J. Lumin., 2014, 35: 486
[15] 吴晓晓, 李福山, 吴 薇等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔性OLED器件 [J]. 发光学报, 2014, 35: 486
[16] Yang W Y, Li J, Gao J H ,et al. Preparation and electrochemical properties of PEDOT/AC composites electrodes for supercapacitors [J]. J. Funct. Mater., 2017, 48: 2005
[16] 杨文耀, 李 杰, 高君华等. 超级电容器用PEDOT/AC复合电极的制备及电化学性能 [J]. 功能材料, 2017, 48: 2005
[17] Chen J, Hu Z R, Zheng X C ,et al. Research progress on modification of highly conductive PEDOT/PSS composites [J]. Eng. Plast. Appl., 2018, 46(8): 138
[17] 陈 杰, 胡章润, 郑显才等. 高导电PEDOT/PSS复合材料改性研究进展 [J]. 工程塑料应用, 2018, 46(8): 138
[18] Wu X, Zhao Q, Huang Y F ,et al. Effects of PSS doping on the electrochemical properties of poly (3, 4-ethylenedioxythiophene) [J]. Electron. Comp. Mater., 2013, 32(6): 42
[18] 吴 頠, 赵 强, 黄艺芬等. PSS掺杂对PEDOT电化学性能的影响 [J]. 电子元件与材料, 2013, 32(6): 42
[19] Abreu C M, Izquierdo M, Merino P ,et al. A New approach to the determination of the cathodic protection period in zinc-rich paints [J]. Corrosion, 1999, 55: 1173
[20] Xie D M, Hu J M, Tong S P ,et al. The development of zinc-rich paints [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 314
[20] 谢德明, 胡吉明, 童少平等. 富锌漆研究进展 [J]. 中国腐蚀与防护学报, 2004, 24: 314
[21] Abreu C M, Izquierdo M, Keddam M ,et al. Electrochemical behaviour of zinc-rich epoxy paints in 3% NaCl solution [J]. Electrochim. Acta, 1996, 41: 2405
[22] Abreu C, Espada L, Izquierdo M ,et al. Factors affecting the electrochemical behaviour of zinc-rich epoxy paints [A]. Organic and Inorganic Coatings for Corrosion Prevention-Research and Experiences: (EFC20) [C]. Maney Publishing, 1997: 23
[23] Ferreira M G S, Duarte R G, Montemor M F ,et al. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel [J]. Electrochim. Acta, 2004, 49: 2927
[24] Zuo Y, Pang R, Li W ,et al. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS [J]. Corros. Sci., 2008, 50: 3322
[25] Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
[26] Uzoma P C, Liu F C, Xu L ,et al. Superhydrophobicity, conductivity and anticorrosion of robust siloxane-acrylic coatings modified with graphene nanosheets [J]. Prog. Org. Coat., 2019, 127: 239
[27] Chen H B, Zheng J W, Qiao L ,et al. Surface modification of NdFe12Nx magnetic powder using silane coupling agent KH550 [J]. Adv. Powder Technol., 2015, 26: 618
[1] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[2] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[3] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[4] CHEN Lifei, LUO Yunrong, ZHANG Yingqian, LI Hui, LI Xiulan, LIAO Wenli. Effect of Pre-corrosion by Salt Spray on Extremely Low Cycle Fatigue Performance of HRB400E Seismic Steel Bar[J]. 材料研究学报, 2021, 35(2): 101-109.
[5] ZENG Zeyun, LI Changrong, LI Zhiying, HUANG Sheng, LI Shiwang, YOU Jingtian. Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar[J]. 材料研究学报, 2021, 35(11): 857-865.
[6] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[7] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[8] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
[9] Yu TONG,Wanhong LI,Jia DONG,Xuejun SONG,Han WANG,You ZENG. Suspension Dispersibility and Tribological Properties of Graphene-modified Lubricant Oil[J]. 材料研究学报, 2019, 33(1): 59-64.
[10] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[11] Yingying LIU, Long WAN, Junsha WANG. Surface Modification of SiC Powders in Vitrified Grinding Wheel by In-situ Sol-gel Method[J]. 材料研究学报, 2017, 31(9): 659-664.
[12] Jing CAO, Licong AN, Xing QI, Yitao YANG. Pitting Corrosion Behavior of Cast Ti-bearing Duplex Stainless Steel[J]. 材料研究学报, 2017, 31(7): 553-560.
[13] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[14] Na WANG,Yinan ZHANG,Honghe LUAN,Jing ZHANG. Preparation and Anti-corrosion Properties of Waterborne Epoxy Coatings Containing Organic Microspheres[J]. 材料研究学报, 2017, 31(1): 1-8.
[15] WANG Bo, HUANG Chi, HUANG Zhixiong, ZHANG Jingjie. Effect of Different Coupling Agents on Interfacial Properties of Hollow Glass Microsphere/Phenolic Syntactic Foams[J]. 材料研究学报, 2016, 30(3): 209-219.
No Suggested Reading articles found!