Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 721-727    DOI: 10.11901/1005.3093.2019.138
ARTICLES Current Issue | Archive | Adv Search |
Effect of Aging Treatment at 750℃ on Fatigue Crack Propagation Behavior of GH4742 Superalloy
ZHANG Xingshuo1,2,WANG Lei1,2(),LIU Yang1,2,WANG Sikun1,2
1. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

ZHANG Xingshuo,WANG Lei,LIU Yang,WANG Sikun. Effect of Aging Treatment at 750℃ on Fatigue Crack Propagation Behavior of GH4742 Superalloy. Chinese Journal of Materials Research, 2019, 33(10): 721-727.

Download:  HTML  PDF(12028KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the microstructure of GH4742 superalloy after aging at 750℃ on the fatigue crack propagation behavior were investigated. The results show that during aging the primary block like γ′-phase grows up with a smooth boundary, the secondary petal-shaped γ′-phase breaks along the boundary, and the thrice γ′-phase re-dissolves into the matrix or coarsens into corner square like γ′-phase. The main fatigue crack easily propagates across the region without the primary γ′-phase or the secondary γ′-phase. With the increasing aging time the fatigue crack propagation rate increases. Within the near-threshold region the fatigue crack propagation rate is very sensitive to the microstructure. The smooth boundaries of the primary γ′-phase and the secondary γ′-phase lead to the increase of fatigue crack propagation rate, but the fatigue crack propagation resistance increases with the appropriate coarsening of the thrice γ′-phase within the low ΔK region. Because the range of stress intensity factor ΔK is higher in both the Paris region and the rapid propagation region, the influence of the microstructure on the fatigue crack propagation rate is decreased.

Key words:  metallic materials      GH4742 superalloy      aging      fatigue      crack propagation behavior     
Received:  04 March 2019     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(U1708253);Major Projects in Aviation Engines and Gas Turbines(2017-VI-0002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.138     OR     https://www.cjmr.org/EN/Y2019/V33/I10/721

Fig.1  Dimensions of tensile specimen of GH4742 superalloy
Fig.2  Compact-tension specimen of GH4742 superalloy used for fatigue crack growth rate testing
Fig.3  SEM morphology of γ′ phase of GH4742 superalloy (a) SHTed; aged at 750℃ for (b) 100 h; (c) 500 h; (d) 1000 h
Fig.4  SEM morphology of MC carbide of GH4742 superalloy
Fig.5  Fatigue crack growth rate da/dN versus ΔK of GH4742 superalloy
SampleParis formula
SHTda/dN=1.62011×10-12K) 3.14277
Ada/dN=2.04743×10-13K) 3.81455
Bda/dN=1.72628×10-12K) 3.13395
Cda/dN=6.20958×10-13K) 3.47146
Table 1  Paris formula of GH4742 superalloy aged at 750℃
Fig.6  Fatigue crack growth morphology in near-threshold regions of GH4742 superalloy (a) SHTed; aged at 750℃ for (b) 100 h; (c) 500 h; (d) 1000 h
Sample

Yield strength

/MPa

Tensile strength/MPa

Hardness

(HB)

SHT9261419368
A9761447383
B9551420378
C9031415373
Table 2  The RT tensile property and hardness of GH4742 superalloy aged at 750℃
Fig.7  Fatigue crack growth morphology of GH4742 superalloy aged at 750℃ (a), (b) SHTed in Paris regions and in rapid propagation regions; (c), (d) aged at 750℃ for 1000 h in Paris regions and in rapid propagation regions
Fig.8  Roughness of fatigue crack growth path of GH4742 superalloy aged at 750℃
Fig.9  Fatigue crack growth morphology of near-threshold regions (a, d, g, j), Paris regions (b, e, h, k) and rapid propagation regions (c, f, i, l) of GH4742 superalloy (a-c) SHTed; aged at 750℃ for (d-f) 100 h; (g-i) 500 h and (j-l) 1000 h
[1] Guo J T. Material Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008.
[1] 郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008
[2] Guo J T, Zhou L Z, Yuan C ,et al. Microstructure and properties of several originally invented and unique superalloys in China [J]. The Chinese Journal of Nonferrous Metals, 2011, 02: 237
[2] 郭建亭, 周兰章, 袁 超等. 我国独创和独具特色的几种高温合金的组织和性能 [J]. 中国有色金属学报, 2011, 02: 237
[3] Qin H Y, Chen G, Zhu Q ,et al. High temperature low cycle fatigue behavior of GH4742 alloy [J]. Journal of Iron and Steel Research(International), 2015, 22(06): 551
[4] Zhang Y, Cao F R, Lin K Z ,et al. Dynamic recrystallization behavior of GH4742 superalloy [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(11): 3091
[4] 张 云, 曹富荣, 林开珍等. GH4742高温合金的动态再结晶行为 [J]. 中国有色金属学报, 2013, 23(11): 3091
[5] Huang X B, Kang Y, Zhou H H ,et al. Influence of heat treatment on the microstructure of a unidirectional Ni-base superalloy [J]. Materials Letters, 1998, 36(1): 210
[6] Huang Q X, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000
[6] 黄乾晓, 李汉康. 高温合金 [M]. 北京:冶金工业出版社, 2000
[7] Xie Y J, Liang X F, Liao H B ,et al. Microstructure and segregation elimination of superalloy GH742 ingot [J]. Journal of Iron and Steel Research, 2003, 15(7): 17
[7] 谢永军, 梁学峰, 缪宏博等. GH742合金钢锭的组织及偏析的消除 [J]. 钢铁研究学报, 2003, 15(7): 17
[8] Lu X D, Du J H, Deng Q ,et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy [J]. Journal of Alloys and Compounds, 2009, 486(1): 195
[9] Li W. Study on a new type of high property turbine plate GH742 alloy [D]. Beijing: Beijing Institute of Aerial Materials, 2003
[9] 李 伟. 新型高性能涡轮盘合金GH742的探索研究 [D]. 北京: 北京航空材料研究院, 2003
[10] Zhou G, Ding H, Cao F R ,et al. A comparative study of various flow instability criteria in processing map of superalloy GH4742 [J]. Journal of Materials Science & Technology, 2014 , 30(03): 217
[11] Beden S M, Abdullah S, Ariffin A K ,et al. Fatigue crack growth simulation of aluminium alloy under spectrum loadings [J]. Materials & Design, 2010, 31(7): 3449
[12] Chen L, Cai L, Yao D. A new method to predict fatigue crack growth rate of materials based on average cyclic plasticity strain damage accumulation [J]. Chinese Journal of Aeronautics, 2013, 26(1): 130
[13] Ren W J, Nicholas T. Effects and mechanisms of low cycle fatigue and plastic deformation on subsequent high cycle fatigue limit in nickel-base superalloy Udimet 720 [J]. Mater Sci Eng A, 2002, 332(1-2): 236
[14] Shyam A, Milligan W W. Effects of deformation behavior on fatigue fracture surface morphology in a nickel- base superalloy [J]. Acta Mater, 2004, 52(6): 1503
[15] ASTM E 647-15, Test method for measurement of fatigue crack growth rates [S].
[15] (ASTM E 647-15, 疲劳裂纹扩展速率测量试验方法 [S].
[16] Long Z D, Deng Q, Lin P ,et al. Effect of heat treatment on microstructure and mechanical properties of GH742 superalloy [J]. Journal of Materials Engineering, 1999, 03: 41
[16] 龙正东, 邓 群, 林 平等. 热处理对GH742合金组织和力学性能的影响 [J]. 材料工程, 1999, 03: 41
[17] Wang P, Dong J X, Yang L ,et al. Influencing factors of crack propagation rate of superalloy [J]. Materials Review, 2008, 22(6): 61
[17] 王 璞, 董建新, 杨 亮等. 高温合金裂纹扩展速率的影响因素 [J]. 材料导报, 2008, 22(6): 61
[18] Wang L. Mechanical Properties of Materials [M]. Shenyang: Northeastern University Press, 2014
[18] 王 磊. 材料的力学性能 [M]. 沈阳: 东北大学出版社, 2014
[19] Wang G Z. Fatigue of Materials [M]. Beijing: National Defense Industry Press, 1999
[19] 王光中等译. 材料的疲劳 [M]. 北京: 国防工业出版社, 1999
[20] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2005
[20] 钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2005
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!