Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 481-487    DOI: 10.11901/1005.3093.2018.690
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method
Pengfei ZHOU,Peng ZHANG(),Yunhui DU,Yujie WANG,Cheng ZUO
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method. Chinese Journal of Materials Research, 2019, 33(7): 481-487.

Download:  HTML  PDF(6378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Li-rich cathode material of Li1.2Mn0.54Ni0.13Co0.13O2 was prepared by spray drying method. The structure, morphology and electrochemical properties of the materials were characterized and the effect of sintering temperature on electrochemical properties of the material were investigated. Results show that the cathode material has a good layered structure, the primary particles exhibited rather uniform size distribution with average size of 100 nm. The initial discharge specific capacity of the prepared material can reach 220.2 mAh/g. The coulomb efficiency of the material prepared by sintering at 800oC can reach 72.5%, and the capacity retention rate can reach 96.8% after 18 cycles. Meanwhile, it also showed good electrochemical performance in electrochemical impedance and cyclic voltammetry.

Key words:  materials science      spray drying method      Li1.2Mn0.54Ni0.13Co0.13O2      cathode material      electrochemical performance     
Received:  05 December 2018     
ZTFLH:  TM911  
Fund: Supported by Natural Science Foundation of Beijing(2162036)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.690     OR     https://www.cjmr.org/EN/Y2019/V33/I7/481

Fig.1  TG-DTA curves of the precursor
Fig.2  XRD patterns of ma terials sintered at different temperatures (a) 800℃ (b) 850℃ (c) 900℃
Temperaturea/nmc/nmc/aI(003)/I(104)
800℃0.285011.423254.99371.21
850℃0.284901.422754.99391.22
900℃0.285071.423344.99291.22
Table 1  Lattice parameters of materials sintered at different temperatures
Fig.3  SEM images of sample sintered at 800℃
Fig.4  TEM image of sample of sample sintered at 800℃
Fig.5  First charge/discharge curves of sample sintered at different temperatures
Temperature/℃1st charging specific capacity/mAh·g-11st discharging specific capacity/mAh·g-1Irreversible capacity loss/mAh·g-1Coulomb efficiency/%
800 oC293.6212.880.872.5%
850 oC316.9203113.964.1%
900 oC322220.2101.868.4%
Table 2  First charge/discharge parameter of sample sintered at different temperatures
Fig.6  Charge/Discharge curves of sample sintered at different temperatures under different cycles (a) 800℃ (b) 850℃ (c) 900℃
Fig.7  Discharge mid-point voltage of sample sintered at different temperatures
Fig.8  Cyclic performance of sample sintered at different temperatures
Temperature/℃1st discharging specific capacity/mAh·g-1Discharging specific capacity after 18 cycles/mAh·g-1Capacity retention rate after 18 cycles/%
800℃212.820696.8%
850℃203190.693.9%
900℃220.2192.887.6%
Table 3  Cyclic parameter of sample sintered at different temperatures
Fig.9  Cyclic voltammetry of sample sintered at 800℃
Fig.10  EIS curves and equivalent circuit of sample sintered at different temperatures
Temperature/℃Rs/Ω·cm2RSEI/Ω·cm2
800℃17.4979.17
850℃14.4995.37
900℃22.97108.50
Table 4  Impedance of equivalent circuit of sample sintered at different temperatures
[1] Wang J, He X, Paillard,et al. Lithium-and manganese-rich oxide cathode materials for high-energy lithium ion batteries [J]. Advanced Energy Materials, 2016, 6(21): 1600906
[2] Koga H, Croguennec L, Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li1.2Mn0.54Co0.13-Ni0.13O2 [J]. Electrochemical Society, 2013, 160(48): A786
[3] Arun N, Denis Y, et al. Enhanced cycling stability of o-LiMnO2 cathode modified by lithium boron oxide coating for lithium-ion batteries [J]. Solid State Electrochemistry, 2014, 18: 1915
[4] Qiu X Y, Zhang Q C, Zhang Q Q, et al. Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS [J]. Physical Chemistry Chemical Physics Pccp, 2012, 14(8): 2617
[5] Xiang X, Fu Z, Li W, et al. Morphology-controllable synthesis of LiMn2O4 particles as cathode materials of lithium batteries [J]. Solid State Electrochemistry, 2013, 17(4): 1201
[6] Gao T H, Liu H Y, Zhang P, et al. Structural and electronic properties of Al-doped spinel LiMn2O4 [J]. Acta Physica Sinica, 2012, 61(18): 187306
[7] Jiang X, Wang Z, Rooney D, et al. A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode [J]. Electrochemical Acta, 2015, 160: 131
[8] Shi S, Tu J, Tang Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54-Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta, 2013, 88(16): 671
[9] Kong J, Wang C, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2 [J]. Electrochimica Acta, 2015, 174: 542
[10] Ito A, Shoda K, Sato Y, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07-Mn0.56]O2 [J]. Power Sources, 2011, 196(10): 4785
[11] Gao J, Huang Z, Li J, et al. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery [J]. Ionics, 2014, 20(3): 301
[12] Hou M, Guo S, Liu J, et al. Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process [J]. Power Sources, 2015, 287: 370
[13] Oh P, Myeong S, Cho W, et al. Superior long-term energy retention and volumetric energy density for Li-rich cathode materials [J]. Nano Letters, 2014, 14(10): 5965
[14] Yu H, Wang Y, Asakura D, et al. Electrochemical kinetics of the 0.5Li2-MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries [J]. RSC Advances, 2012, 2(23): 8797
[15] Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 [J]. Power Sources, 2010, 195: 567
[16] Yabuuchi N, Yoshii K, Myung S, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 [J]. The American Chemical Society, 2011, 133(12): 4 404-419
[17] Cho Y H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J]. Power Sources, 2005, 142(1-2): 306
[18] Julien C, Ziolkiewicz S , Lemal M, et al. Synthesis, structure and electrochemistry of LiMn2-yAlyO4 prepared by a wet-chemistry method [J]. Master Chem, 2001, 11: 1837
[19] Shaju K.M., Subba Rao G.V., et al, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta,2003, 48: 145
[20] Yu R B, Lin Y B, et al, Investigation on the enhanced electrochemical performances of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modi?cation with ZnO [J]. Electrochimica Acta,2015, 173: 515
[21] He Y S, Felix F, Rick J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material Li[NixLi(1-2x)/3-Mn(2-x)/3]O2(0≤x≤0.5) [J]. The American Chemical Society, 2014, 136(3): 999
[22] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]02 [J]. American Chemical Society, 2006, 128(26): 8694
[23] Gu M, Belharouak I, Zheng J M, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries [J]. ACS Nano, 2013, 7(1): 760
[24] Bonani S, Nomasonto R, et al. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries [J]. Power Sources, 2017, 353: 210
[25] Zhou L, Wu Y, et al. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with Li+-conductive Li2SiO3 for lithium ion batteries [J]. Alloys and Compounds, 2017, 724: 991
[26] Hu E Y, Lyu Y C, Xin H L, et al. Explore the effects of microstructural defects on voltage fade of Li-and Mn-rich cathodes [J]. Nano Letters, 2016, 16(10): 5999
[27] Xu B, Fell C R, Chi M, et al. Identifying surface structural changes in layered Li—excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study [J]. Energy & Environmental Science, 2011, 4(6): 2223
[28] Zheng Y, Chen L, Su Y F, et al. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials [J]. Materials Chemistry A, 2017, 5(46): 24292
[29] Zheng J, Gu M, Xiao J, et al. Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials [J]. Chemistry of Materials, 2014, 26(22): 6320
[30] Wan D Y, Fan Z Y, Dong Y X, et al. Effect of metal (Mn, Ti) doping on NCA cathode materials for lithium ion batteries [J]. Nanomaterials, 2018, 53(26): 191
[31] Hashambhoy A M, Whitacre J F, et al. Li Diffusivity and phase change in LiFe0.5Mn0.5PO4: A comparative study using galvanostatic intermittent titration and cyclic voltammetry [J]. The Electrochemical Society, 2011, 158(4): A390
[32] Zhang J, Lei Z H, et al. Surface Modi?cation of Li1.2Mn0.54Ni0.13-Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries [J]. Applied materials and interfaces, 2015, 7: 15821
[33] Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Reprint of “Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy” [J]. Electroanalytical Chemistry, 2013, 688: 393
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] JI Hongmei, WANG Xu, LI Xiaowu. Comparative Investigations of in vitro Apatites Depositionin Nacre and Crossed-lamellar Structures in Mollusk Shells[J]. 材料研究学报, 2023, 37(4): 241-247.
[4] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[6] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[7] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[8] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[9] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[10] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[11] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[12] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[13] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
[14] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[15] Jiangpei XUE,Chunhai JIANG,Zhimin ZOU,Bingxuan PAN. Electrochemical Properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 Blended Cathode Materials with Varied Grain-gradations[J]. 材料研究学报, 2019, 33(3): 170-176.
No Suggested Reading articles found!