Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 505-514    DOI: 10.11901/1005.3093.2018.664
ARTICLES Current Issue | Archive | Adv Search |
Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes
Zhengjun WANG1,Hongcai LIU1,Yi GUO1,Jun BIAN1(),Jianbao LI1,Hailan LIN1(),Yun LU2
1. College of Materials Science and Engineering, Xihua University, Chengdu 610039, China
2. Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 262-8522, Japan
Cite this article: 

Zhengjun WANG,Hongcai LIU,Yi GUO,Jun BIAN,Jianbao LI,Hailan LIN,Yun LU. Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes. Chinese Journal of Materials Research, 2019, 33(7): 505-514.

Download:  HTML  PDF(12011KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocomposites of GO@HNTs/PP were prepared through melt blending method with polypropylene (PP) as matrix and hybrid nanofillers (GO@HNTs) composed of functionalized graphene oxide (GO) and halloysite nanotubes (HNTs) as filler. The structures and properties of the prepared hybrid nanofillers and PP nanocomposites were systematically investigated. Results show that there is chemical interactions between functionalized GO and HNTs, resulting in formation a "barrier effect" between them and inhibit the aggregation of the two species in the PP matrix. The tensile strength and impact strength of PP nanocomposites with 0.5% GO@HNTs hybrid nano-filler increased by 17.5% and 80.4%, respectively, compared with those of pure PP. Compared with the mechanical properties of composites prepared by adding the same content GO or HNTs alone, GO@HNTs hybrid nano-filler had obvious synergistic strengthening-toughening effect on the PP matrix. GO@HNTs/PP exhibited higher storage modulus, loss modulus and glass transitional temperatures than those of pure PP. The crystallization temperature, melting temperature, crystallinity and thermal decomposition temperature of PP nanocomposites are effectively increased due to the “heterogeneous nucleation effect” and “physical insulation effect” of GO@HNTs.

Key words:  Composite      Polypropylene (PP)      Graphene      Halloysite Nanotube (HNTs)      Properties     
Received:  19 November 2018     
ZTFLH:  TQ325.1+4  
Fund: Cooperation Project of Chunhui Plan of the Ministry of Education of China(Z2018088);Cooperation Project of Chunhui Plan of the Ministry of Education of China(Z2017070);Open Research Project of Comprehensive Health Promotion Center of Xihua University(DJKG2019-002);“Xihua Cup” Innovation and Entrepreneurship Project for College Students of Xihua University(2019051);the Comprehensive Reform and Practical Teaching Team Project of "Material Discipline" under Innovative and Entrepreneurial Environment(05050028)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.664     OR     https://www.cjmr.org/EN/Y2019/V33/I7/505

Fig.1  UV-vis absorption spectra of GO (0.05 mg/mL), GO-g-TA (0.05 mg/mL), HNTs (0.05 mg/mL), GO@HNTs hybrid nanofillers (0.05 mg/mL), and the theoretical value of absorption intensity of GO@HNTs hybrid nanofillers solution simulated by linear superposition relation
Fig.2  FTIR spectra of the NGP, GO, GO-g-TA, HNTs, and the GO@HNTs hybrid nanofillers
Fig.3  Raman spectra of the NGP, GO, GO-g-TA, HNTs, and the GO@HNTs hybrid nanofillers
Fig.4  XRD profiles of (a) the NGP and GO; (b) GO-g-TA, HNTs and the GO@HNTs hybrid nanofillers
Fig.5  SEM images of fillers. (a) HNTs, (b) GO, (c) GO-g-TA and (d) the GO@HNTs hybrid nanofillers
Fig.6  SEM images of (a) pure PP, (b) HNTs/PP, (c) GO/PP, (d-g) GO@HNTs/PP nanocomposites with 0.25, 0.5, 1.0 and 2.0% GO@HNTs hybrid nanofillers
Fig.7  XRD traces of pure PP and GO@HNTs/PP nanocomposites with different contents of GO@HNTs hybrid nanofillers
Fig.8  The typical mechanical properties of PP nanocomposites (1#-PP; 2#-0.25%GO@HNTs/PP; 3#-0.5GO@HNTs/PP; 4#-1.0%GO@HNTs/PP, 5#-2.0%GO@HNTs/PP, 6#-0.5%GO/PP, 7#-0.5%HNTs/PP)
Fig.9  Dynamic mechanical properties of all the PP samples: (a) storage modulus (E′), (b) loss mo-dulus (E" ) and (c) loss factor
GO@HNTs/%Tend/℃Ts/℃Tmax/℃
0492.0453.7481.1
0.25494.9453.6485.1
0.5494.8454.6485.8
1483.8468.2487.8
2495.5455.1489.5
Table 1  The TGA results of pure PP and GO@HNTs/PP na-nocomposites
Fig.10  DSC cooling (a), heating (b) and (c) variation of crystallinity and increasement of crystallin-ity of GO@HNTs/PP nanocomposites with different contents of GO@HNTs hybrid nano-fillers. Curve a-pure PP; curves b, c, d and e are GO@HNTs/PP nanocomposites containing 0.25%, 0.5%, 1.0% and 2.0% GO@HNTs hybrid nanofillers
GO@HNTs/%Tcp/℃Hc/J·g-1Tmp/℃Hm/J·g-1Xc/%
0108.888.6163.078.937.8
0.25114.090.3165.379.738.2
0.5114.991.3164.981.639.2
1112.793.8168.483.040.1
2113.793.9167.987.342.6
Table 2  The DSC results of pure PP and GO@HNTs/PP na-nocomposites
[1] Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6(3): 183
[2] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442, 282
[3] He X L, Yu Y F, Chen Q, et al. Recent advances in graphene based composite materials [J]. Mater. Rev., 2013, 27(7100): 22
[4] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites [J]. Prog. Polym. Sci., 2010, 35(11): 1350
[5] Huang X. Graphene-based composites [J]. Chem.Soc. Rev., 2012, 41(2): 666
[6] Sengupta R, Bhattacharya M, Band-yopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites [J]. Prog. Polym. Sci., 2011, 36(5): 638
[7] Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nat. Nanotechnol., 2008, 3(6): 327
[8] Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene [J]. Nano. Res., 2015, 8(4): 1039
[9] Young S Y, Yo H B, Do H K, et al. Reinforcing effects of adding alkylated graphene oxide to polypropylene [J]. Carbon, 2011, 49(11): 3553
[10] Cao Y W, Zhang J, Feng J C, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets [J]. ACS. Nano., 2011, 5(7): 5920
[11] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem. Soc. Rev., 2010, 39(1): 228
[12] Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalized graphene oxide [J]. J. Mater. Chem., 2011, 21(10): 3455
[13] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44(15): 3342
[14] Xu C, Wu X, Zhu J, et al. Synthesis of amphiphilic graphite oxide [J]. Carbon, 2008, 46(2): 386
[15] Bian J, Wei X W, Lin H L, et al. Preparation and characterization of modified graphite oxide/poly (propylene carbonate) composites by solution intercalation [J]. Polym. Degrad. Stabil., 2011, 96(10): 1833
[16] Bian J, Lin H L, He F X, et al. A facile approach to selective reduction and functionalization of graphene oxide and its application in fabrication of multifunctional polypropylene nanocomposites [J]. Polym. Compos., 2015, 7(2): 131
[17] Bian J, Wang Z J, Lin H L, et al. Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide [J]. Compos. Part A, 2017, 97: 120
[18] Bian J, Wang G, Lin H L, et al. HDPE composites strengthened-toughened synergistically by L-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials [J]. J. Appl. Polym. Sci., 2017, 134(29). DOI: 10.1002/APP.45055
[19] Kavitha T, Gopalan A I, Lee K P, et al. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids [J]. Carbon, 2012, 50(8): 2994
[20] Bell N J, Yun H N , Du A J, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared tio2-reduced graphene oxide composite [J]. J. Phys. Chem. C., 2011, 115(13): 6004
[21] Song J, Xu L, Zhou C Y, et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection [J]. ACS. Appl. Mater. & Inter., 2013, 5(24): 12928
[22] Haldorai Y, Kim B K, Jo Y L, et al. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach [J]. Mater. Chem. & Phys., 2014, 143(3): 1452
[23] Jiang T, Kuila T, Kim N H, et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites [J]. Compos. Sci. Technol., 2013, 79: 115
[24] Hsiao M C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets [J]. Nanoscale, 2013, 5(13): 5863
[25] Kou L, Gao C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings [J]. Nanoscale, 2011, 3(2): 519
[26] Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49(3): 793
[27] Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors [J]. J. Power Sources, 2010, 195(9): 3041
[28] Fan Z, Yan J, Zhi L, et al. A Three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors [J]. Adv. Mater., 2010, 22(33): 3723
[29] Lee J, Kim Y K, Min D H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films [J]. J. Am. Chem. Soc., 2010, 132(42): 14714
[30] Yang S Y, Chang K H, Lee Y F, et al. Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters [J]. Electrochem. Commun., 2010, 12(9): 1206
[31] Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano. Lett., 2009, 9(5): 1949
[32] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano. Lett., 2008, 8(8): 2277
[33] Wu W,Wu P J,He D,et al. Application progress of halloysite nanotube in polymer nanocomposites [J]. Chem. Indus. Eng. Prog., 2011, 30(12): 2647
[33] (伍巍, 吴鹏君, 何 丁等. 长链硅烷对埃洛石纳米管的表面改性研究 [J]. 化工进展, 2011, 30(12): 2647)
[34] Jia Z, Guo B, Jia D. Advances in rubber/halloysite nanotubes nanocomposites [J]. J. Nanosci. Nanotechno., 2014, 14(2): 1758
[35] Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment [J]. Environ. Sci: Nano., 2016, 3(1): 28
[36] Ravindra K, Manasi G, Sheetal G, et al. Halloysite nanotubes and applications: a review [J]. J. Adv. Sci. Res., 2012, 3(2): 25
[37] Swapna V P, Selvin T P, Suresh K I, et al. Thermal properties of poly (vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites [J]. Int. J. Plas. Technol., 2015, 19(1): 124
[38] Long G B, Trinh D N, Nguyen T T. Grafting of poly (poly (ethylene glycol) methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization [J]. J. Nanosci. Nanotechnol., 2019, 19(2): 927
[39] Zhan Y Q, He S J, Wan X Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment [J]. J. Membrane.Sci., 2018, 567: 76
[40] Gaaz T S, Sulong A B, Akhtar M N, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites [J]. Molecules. 2015, 20(12): 22833
[41] Bian J, Wei X W, Lin H L, et al. Comparative study on the exfoliated expanded graphite nanosheet-PES composites prepared via different compounding method [J]. J. Appl. Polym. Sci., 2012; 12(5): 3247
[42] Wang W Z, Liu T X. Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles [J]. J. Appl. Polym. Sci., 2008, 109, 1654
[43] Chen W, Wu S, Lei Y, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid [J]. Polymer, 2011, 52(19): 4387
[44] Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon [J]. Phys. Rev. B., 2000, 61: 14095
[45] Tuinstra F, Koenig J. L. Raman spectrum of graphite [J]. J. Chem.Phys., 1970, 53: 1126
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[11] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[13] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[14] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[15] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
No Suggested Reading articles found!