Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 543-551    DOI: 10.11901/1005.3093.2018.650
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution
Kunmao Li1,Jing LIU2(),Xiaoyan ZHANG1,Hong LI2,Yan DAI2
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550003, China
2. School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
Cite this article: 

Kunmao Li,Jing LIU,Xiaoyan ZHANG,Hong LI,Yan DAI. Corrosion Behavior of Carburized Ti6Al4V Ti-alloy in HF Solution. Chinese Journal of Materials Research, 2019, 33(7): 543-551.

Download:  HTML  PDF(12445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rapid carburization of Ti6Al4V titanium alloy was carried out by vacuum induction carburizing method. The corrosion behavior of carburized Ti-alloy in HF solution was investigated. Results show that after rapid carburization a layer of TiC and CTi0.42V1.58 composite compound was formed on the surface of T-alloy, and in comparison with the blank Ti-alloy, the corrosion rate in 0.2% HF solution decreases from 4.65×10-10 g·m-2·h-1 to 3.3×10-10 g·m-2·h-1 for the carburized Ti-alloy. Correspondingly, the free-corrosion potential increased from -0.94 V to -0.68 V, the corrosion current density decreased from 4.10 mA·cm-2 to 1.65 mA·cm-2, the polarization resistance increases from 6.36 Ω·cm2 to 15.8 Ω·cm2 and Rt increases from 0.2 Ω·cm2 to 5.7 Ω·cm2. The corrosion product of carburized layer mainly exhibits n-type semiconductor characteristics, and that of the blank Ti-alloy exhibits p-type semiconductor characteristics. The corrosion mechanism of F- on the carburized layer of Ti6Al4V Ti-alloy is mainly hydrogen evolution corrosion.

Key words:  surface and interface      carburizing      induction heating      Ti6Al4V      microstructure      corrosion behavior     
Received:  12 November 2018     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51574096);National Natural Science Foundation of China(51464008);Guizhou Excellent Young Science and Technology Talents Training Project([2016]5607)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.650     OR     https://www.cjmr.org/EN/Y2019/V33/I7/543

Fig.1  Induction carburizing process of Ti6Al4V
SampleEcorr/VIcorr/mA·cm-2Rp/Ω·cm2V/g·m-2·h-1βa/mVβc/mV
Original sample1-0.953.986.184.65×10-1010 067 681.0
2-0.944.106.3610 802.2
3-0.914.55.71
850℃1-0.743.517.433.93×10-10721.4584.6
2-0.733.487.50
3-0.733.756.95
1-7.022.928.933.82×10-1029906312.06610.3
880℃2-0.692.719.64
3-0.692.879.11
1-0.681.3519.303.3×10-10534.1
910℃2-0.681.6515.802076667264.0
3-0.701.7115.20
Table 1  Tafel fitting parameters of polarization curve
Fig.2  Loss of weight changes with time
Fig.3  Polarization curves of Ti6Al4V titanium alloy under different conditions
Fig.4  Impedance spectrum and equivalent circuit diagram of Ti6Al4V titanium alloy under different conditions (a) Nyquist plot, (b) impedance modulus, (c) phase Angle, (d) equivalent circuit
Sample

L

/10-7H·cm2

Rs

/Ω·cm2

CPE1Rf/Ω·cm2CPE2

Rt

/Ω·cm2

X2·10-4

Y0

-1·cm-2·S-n

n1

Y0

-1·cm-2·S-n

n1
Original sample5.95.31.3×10-410.22×10-210.21.4
850℃7.66.23.1×10-211.11.4×10-20.90.51.7
880℃8.25.51.8×10-20.82.49×10-318.22.3
910℃7.24.94.2×10-3123.61.6×10-20.75.72.0
Table 2  Fitting results of EIS curve
Fig.5  Mott-Schottky curve of Ti6Al4V titanium alloy under different conditions
SamplePotential range/VFlatband potential/VDonor density/Acceptor density
Original sample0~0.4-0.742.32×1032 cm-3
0.4~11.802.22×1030 cm-3
850℃0~0.4-0.082.48×1030 cm-3
0.4~1-0.351.81×1030 cm-3
880℃0~0.4-0.183.87×1030 cm-3
0.4~10.350.51×1030 cm-3
910℃0~0.4-0.328.26×1030 cm-3
0.4~10.380.30×1030 cm-3
Table 3  Fitting results of donor density or acceptor density of passivation film
Fig.6  XRD pattern of Ti6Al4V titanium alloy under different conditions
Fig.7  Cross-section structure of Ti6Al4V titanium alloy under different conditions (a) raw, (b) 850℃, (c) 880℃, (d) 910℃
Fig.8  Surface corrosion morphology and EDS composition analysis
[1] Riccardo G, Alessandro V, Frencesco D, et al. Dental implants inserted in native bone: Cases series analyses [J]. Dental Research Journal, 2012, 9(Suppl 2): S175
[2] Wang D L, Xu J W, Yu J D. Application of titanium in prosthodontics [J]. Rare metal materials and engineering, 1993, (3): 61
[2] (汪大林, 徐君伍, 于家斗. 钛在口腔修复医学中的应用 [J]. 稀有金属材料与工程, 1993, (3): 61)
[3] Reclaru L, Meyer J M. Effects of fluorides on titanium and other dental alloys in dentistry [J]. Biomaterials, 1998, 19(1-3): 85
[4] Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. [J]. Dental Materials Journal, 2001, 20(4): 305
[5] Shim H M, Oh K T, Woo J Y, et al. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions [J]. 2005, 73B(2): 252
[6] Kumar, Satendra, Narayanan S, et al. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application [J]. Corrosion Science, 2010, 52(5): 1721
[7] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochimica Acta, 2014, 135(22): 526
[8] Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol-water electrolytes [J]. Electrochimica Acta, 2012, 78(9): 65
[9] Mabilleau G, Bourdon S, Jolyguillou M L, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. [J]. Acta Biomaterialia, 2006, 2(1): 121
[10] Grotberg J, Hamlekhan A, Butt A, et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V [J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 677
[11] Jamesh M, Kumar S, Narayanan T S N S, et al. Effect of thermal oxidation on the corrosion resistance of Ti6Al4V alloy in hydrochloric and nitric acid medium [J]. Materials & Corrosion, 2014, 64(10): 902
[12] Jiang H. Enhancement of titanium alloy corrosion resistance via anodic oxidation treatment [J]. International Journal of Electrochemical Science, 2018, 13(4): 3888
[13] Hee A C, Jamali S S, Bendavid A, et al. Corrosion behaviour and adhesion properties of sputtered tantalum coating on Ti6Al4V substrate [J]. Surface & Coatings Technology, 2016, 307: 666
[14] Rahmati B, Sarhan A A D, Basirun W J, et al. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti, 6Al, 4V alloy [J]. Journal of Alloys & Compounds, 2016, 676: 369
[15] Baloyi N M, Popoola A P I, Pityana S L. Microstructure, hardness and corrosion properties of laser processed Ti6Al4V-based composites [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(09): 2912
[16] Yildiz F, Yetim A F, Alsaran A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy [J]. Surface & Coatings Technology, 2008, 202(11): 2471
[17] Liao C J, He Y H, Ming X Z. Effects of Al contents on carburization behavior and corrosion resistance of TiAl alloys [J]. Journal of Materials Engineering & Performance, 2015, 24(10): 1
[18] Bailey R, Sun Y. Corrosion and tribocorrosion performance of pack-carburized commercially pure titanium with limited oxygen diffusion in a 0.9% NaCl solution [J]. Journal of Bio- and Tribo-Corrosion, 2018, 4(1): 6
[19] Yan Z B, Liu J, Yang F, et al. Rapid induction nitriding strengthening of 20CrMnTi steel [J]. Transactions of Materials and Heat Treatment, 2018, 39(08): 129
[19] (颜志斌, 刘 静, 杨 峰等. 20CrMnTi钢快速感应渗氮强化 [J]. 材料热处理学报, 2018, 39(08): 129)
[20] Feng Z G, Zheng J B, Liu J. Effect of nitriding temperature on wear resistance of vacuum induction nitriding layer of 38CrMoAl steel [J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 100
[20] (冯治国, 郑纪豹, 刘 静. 渗氮温度对38CrMoAl钢真空感应渗氮层耐磨性能的影响 [J]. 材料热处理学报, 2017, 38(10): 100)
[21] Liu J, Zheng J B, Feng Z G, et al. A double pulse rapid nitriding device based on induction heating [P]. Chinese patent: CN206680563U, 2017-11-28
[21] (刘 静, 郑纪豹, 冯志国. 一种基于感应加热的双脉冲快速渗氮装置 [P]. 中国专利: CN206680563U, 2017-11-28)
[22] Fazel M, Salimijazi H R, Golozar M A, et al. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process [J]. Applied Surface Science, 2015, 324: 751
[23] Schmidt A M, Azambuja D S. Corrosion Behavior of Ti and TI6Al4V in Citrate Buffers Containing Fluoride [J]. Materials Research, 2010, 13(1): 45
[24] Moutarlier V, Gigandet M P, Normand B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species [J]. Corrosion Science, 2005, 47(4): 937
[25] Liao C, Yang J, He Y, et al. Electrochemical corrosion behavior of the carburized porous TiAl alloy [J]. Journal of Alloys & Compounds, 2015, 619: 221
[26] Jiang Y L, Mu Y S. The ac impedance spectrum of titanium alloy TC4 in 3%NaCl solution after plastic deformation [J], Journal of University of Science and Technology Beijing, 2004, (06): 616
[26] (姜应律, 吴荫顺. 钛合金TC4塑性变形后在3%NaCl溶液中的交流阻抗谱 [J]. 北京科技大学学报, 2004, (06): 616)
[27] Qin B, Li S Y, Fan H Q, et al. Semiconductor characteristics and corrosion behavior of anodic oxidation film [J]. Materials Protection, 2011, 44(10): 8
[27] (钱 备, 李淑英, 范洪强等. 钛阳极氧化膜的半导体特性及腐蚀行为 [J]. 材料保护, 2011, 44(10): 8)
[28] Guo H X, Lu B T, Luo J L. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis [J]. Electrochimica Acta, 2006, 52(3): 1108
[29] Woldemedhin M T, Raabe D, Hassel A W. Characterization of thin anodic oxides of Ti-Nb alloys by electrochemical impedance spectroscopy [J]. Electrochimica Acta, 2012, 82(21): 324
[30] Li N, Li Y, Wang S, et al. Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel [J]. Electrochimica Acta, 2007, 52(3): 760
[31] Marsh J, Gorse D. A photoelectrochemical and ac, impedance study of anodic titanium oxide films [J]. Electrochimica Acta, 1998, 43(7): 659
[32] Xing Y Z, Jiang C P, Hao J M. Time dependence of microstructure and hardness in plasma carbonized Ti-6Al-4V alloys [J]. Vacuum, 2013, 95(9): 12
[33] Cheng L, Liu Z, Yin G. Theoretical research on influences of non-metal elements on the phase transition temperature of commercial pure titanium [J]. Rare Metal Materials & Engineering, 2008, 37(4): 571
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
No Suggested Reading articles found!