Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 552-560    DOI: 10.11901/1005.3093.2018.596
ARTICLES Current Issue | Archive | Adv Search |
Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy
Shanjiang WU1,Junfeng WANG1,Shuwei ZHONG1,Jianbo ZHANG2(),Hang WANG2,Bin YANG1,2()
1. School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Institute of Engineering Research, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

Shanjiang WU,Junfeng WANG,Shuwei ZHONG,Jianbo ZHANG,Hang WANG,Bin YANG. Effect of Trace Mg Addition on Precipitation Behavior and Properties of Cu-Cr Alloy. Chinese Journal of Materials Research, 2019, 33(7): 552-560.

Download:  HTML  PDF(20752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Cr and Cu-Cr-Mg alloys were prepared by melting and casting process, then the effect of Mg addition on hardness, electrical properties and softening resistance of the alloys was assessed. The results show that after aging treatment, the hardness and softening temperature of the Cu-Cr-Mg alloy are higher than that of the Cu-Cr binary alloy, while the high electrical conductivity is maintained. The main strengthening mechanism of these two alloys is aging precipitation strengthening. The addition of Mg inhibits the growth and structural transformation of the nano-precipitates. The strengthening phase of the peak-aged Cu-Cr-Mg alloy still maintains a coherent interface with the matrix. The precipitate with the similar structure as Heulser phase is observed in the over-aging alloy. After post heat treatment of the peak-aged alloys, the size of the strengthening phase of Cu-Cr-Mg alloy is significantly smaller than that of the Cu-Cr alloy. Mg and Cr coexist in the precipitate at the early stage of aging, while in the later stage of aging, only Cr exists inside the precipitate. The theoretical estimation results show that Mg can significantly reduce the interfacial energy between Cu (fcc) and Cr (bcc), leading to segregation of Mg at the interface matrix/precipitate. This may be the main reason why Mg can refine the precipitates and improve the performance of the Cu-Cr alloy.

Key words:  metallic materials      Cu-Cr system alloy      microstructure      aging strengthening      softening resistance     
Received:  30 September 2018     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2016YFB0301400);National Natural Science Foundation of China(51461017);National Natural Science Foundation of China(51561008);Natural Science Foundation of Jiangxi Province(20171ACB21044)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.596     OR     https://www.cjmr.org/EN/Y2019/V33/I7/552

AlloyCrMgCu
Cu-Cr0.37-Bal.
Cu-Cr-Mg0.340.16Bal.
Table 1  Composition for experimental alloys (mass fraction, %)
Fig.1  Effect of aging time on (a) hardness and (b) conductivity of Cu-Cr-(Mg) alloy
Fig.2  Temperature-hardness curve of peak-aged Cu-Cr-(Mg) alloys after carried out at different temperatures for 1 h
Fig.3  TEM images and SAED patterns of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys, aged at 500°C for 0.5 h
Fig.4  TEM images and SAED patterns of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys aged at 500℃ for 1 h
Fig.5  TEM images and SAED patterns of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys aged at 500℃ for 4 h
Fig.6  TEM images and SAED patterns of peak-aged (a-b) Cu-0.37Cr and (c-d) Cu-0.34Cr-0.16Mg alloys after carried out at 600℃ for 1 h
Fig.7  HRTEM images of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys after aging at 500℃ for 0.5 h (The positions of EDS analysis were indicated by white arrows)
PositionCuCrMg
Cu-0.37CrEDS 197.92.1-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 196.52.11.4
Table 2  EDS results of Cu-Cr-(Mg) alloys after aging at 500℃ for 0.5 h (atomic fraction, %)
Fig.8  HRTEM images of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys after aging at 500℃ for 1 h (The positions of EDS analysis were indicated by white arrows)
PositionCuCrMg
Cu-0.37CrEDS 197.82.2-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 197.60.91.5
Table 3  EDS results of Cu-Cr-(Mg) alloys after aging at 500℃ for 1 h (atomic fraction, %)
Fig.9  HRTEM images of (a) Cu-0.37Cr and (b) Cu-0.34Cr-0.16Mg alloys after aging at 500℃ for 4 h (The positions of EDS analysis were indicated by white arrows)
PositionCuCrMg
Cu-0.37CrEDS 197.22.8-
EDS 2100--
Cu-0.34Cr-0.16MgEDS 197.22.8-
Table 4  EDS results of Cu-Cr-(Mg) alloys after aging at 500℃ for 4 h (atomic fraction, %)
[1] Shangina D V, Bochvar N R, Morozova A I, et al. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion [J]. Materials Letters, 2017, 199: 46
[2] Papillon A, Missiaen J M, Chaix J M, et al. Sintering mechanisms of Cu-Cr metallic composites [J]. International Journal of Refractory Metals & Hard Materials, 2017, 65: 9
[3] Fu H D, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy [J]. Material Science and Engineering A, 2017, 700: 107
[4] Wang Y, Yan Q Z, Zhang X L, et al. Effect of copper powder on properties of Cu-based friction material[J]. Chinese Journal of Materials Research, 2013, 27(1): 37
[4] (王 晔, 燕青芝, 张肖路等. 铜粉对铜基摩擦材料性能的影响[J]. 材料研究学报, 2013, 27(1): 37)
[5] Chen J S, Yang B, Wang J F, et al. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys [J]. Materials Research Express, 2018, 5(2): 1
[6] Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper [J]. Acta Materialia, 2012, 60(11): 4575
[7] Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing [J]. Acta Materialia, 2002, 50(7): 1639
[8] Chakrabarti D J, Laughlin D E. The Cr-Cu (chromium-copper) system [J]. Bulletin of Alloy Phase Diagrams, 1984, 5(1): 59
[9] Deng J Q, Zhang X Q, Shang S Z, et al. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites [J]. Materials and Design, 2009, 30(10): 4444
[10] Yamane T. The foundation of high strength and high conductivity conductive copper alloy design [J]. Journal of the Japan Copper and Brass Research Association, 1990, 29: 13
[11] Kermajani M, Raygan S, Hanayi K, et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu-Cr-Zr alloy [J]. Materials Design, 2013, 51: 688
[12] Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment [J]. Journal of Materials Research, 2017, 32(7): 1324
[13] Zhang X P. Research of microstructures and properties of high strength and high conductivity Cu-Cr-In alloys [D]. Ganzhou: Jiangxi University of Science and Technology, 2015
[13] (张小平. 高强高导Cu-Cr-In合金的组织与性能研究 [D]. 赣州: 江西理工大学, 2015)
[14] Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification [J]. Materials Science Engineering A, 2001, 304(1): 529
[15] Zhang P C, Jie J C, Gao Y, et al. Influence of cold deformation and Ti element on the microstructure and properties of Cu-Cr system alloys [J]. Journal of Materials Research, 2015, 30(13): 2073
[16] Cheng J Y, Shen B, Yu F X. Precipitation in a Cu-Cr-Zr-Mg alloy during aging [J]. Materials Characterization, 2013, 81(4): 68
[17] Xiao X P, Liu R Q, Yi Z Y, et al. Two-step deforming and aging research on microstructure and properties of Cu-Cr-Zr-Mg alloy [J]. Materials Review, 2016, 30(12): 81
[17] (肖翔鹏, 柳瑞清, 易志勇等. 二级时效形变对Cu-Cr-Zr-Mg合金组织与性能影响研究[J]. 材料导报, 2016, 30(12): 81)
[18] Xia C D, Jia Y L, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments [J]. Materials Design, 2012, 39: 404
[19] Zhao Z Q, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu-Cr alloy [J]. Journal of Alloys and Compounds, 2018, 752: 191
[20] Yu F X, Cheng J Y, Shen B. Precipitation sequence of Cu-Cr-Zr-Mg alloy during early aging stage [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12): 3360
[20] (余方新, 程建奕, 沈 斌. Cu-Cr-Zr-Mg合金早期时效析出贯序 [J]. 中国有色金属学报, 2013, 23(12): 3360)
[21] Su J H, Dong Q M, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A, 2005, 392(1–2): 422
[22] Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71wt% Cr alloy [J]. Journal of Alloys and Compounds, 2017, 708: 1096
[23] Liu Y, Xiao Z, Li Z, et al. Properties and microstructure evolution of Cu-Cr-Ag alloy with thermomechanical treatments [J]. Chinese Journal of Rare Metals, 2018, 42(4): 0337
[23] (刘 月, 肖 柱, 李 周等. 形变热处理对Cu-Cr-Ag合金组织和性能的影响 [J]. 稀有金属, 2018, 42(4): 0337)
[24] Qi Z F. Diffusion and phase transition in solid metals [M]. Beijing: Machinery Industry Press, 1998: 331
[24] (戚正风. 固态金属中的扩散与相变 [M]. 北京: 机械工业出版社, 1998: 331)
[25] Kaptay G. On the interfacial energy of coherent interfaces [J]. Acta Materialia, 2012, 60(19): 6804
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!