Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 361-370    DOI: 10.11901/1005.3093.2018.470
ARTICLES Current Issue | Archive | Adv Search |
Effect of Fiber Preheating Temperature on Mechanical Properties of Continuous Al2O3f/Al Composites
Yinsheng HU,Huan YU,Zhifeng XU(),Changchun CAI,Mingming NIE
National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

Yinsheng HU,Huan YU,Zhifeng XU,Changchun CAI,Mingming NIE. Effect of Fiber Preheating Temperature on Mechanical Properties of Continuous Al2O3f/Al Composites. Chinese Journal of Materials Research, 2019, 33(5): 361-370.

Download:  HTML  PDF(25197KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite materials of continuous Al2O3f/ZL210A alloy with 40% of Nextel610-Al2O3 fiber were fabricated via vacuum-pressure infiltration process, while the fiber was preheated at temperatures of 500, 530, 560 and 600℃, respectively before pressure-infiltration. The effect of fiber preheating temperature on the microstructure and mechanical properties of the composites of continuous Al2O3f/ZL210A alloy was investigated. The results show that the density of composites increases with the increase of fiber preheating temperature; Among others, the composite of continuous Al2O3f/ZL210A made out of the fiber Al2O3f preheated at 600℃ presents the highest density of 99.2%; The tensile strength of Al2O3 fibers extracted from the prepared composites depends significantly on their preheating temperature, namely the higher preheating temperature may results in the lower tensile strength, as an example, the extracted Al2O3 fiber, which was subjected to pre-heat treatment at 600 C, presents a rough surface morphology with tensile strength of only 1150 MPa; The fiber preheating temperature has a significant effect on the tensile strength of continuous Al2O3f/Al composites. Indeed, the composites fabricated with Al2O3 fibers, which were preheated at 500, 530, 560 and 600℃ respectively, possess corresponding tensile strength of 298, 465, 498 and 452 MPa. The existed defects and damages on fibers, as well as the interfacial reaction between fibers and the matrix may be the main factors affecting the strength of the composites of continuous Al2O3f/ZL210A alloy.

Key words:  metal matrix composites      fiber preheating temperature      vacuum pressure infiltration      interface reaction      fiber damage      mechanical properties     
Received:  24 July 2018     
ZTFLH:  TB331  
Fund: National Nature Science Foundtion of China(51365043);Jiangxi Natural Science Foundation(20151BAB206004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.470     OR     https://www.cjmr.org/EN/Y2019/V33/I5/361

Fiber model

Density

/g·cm-3

Monofilament diameter/μm

Tensile strength

/GPa

Young's modulus

/GPa

Elongation

/%

Nextel6103.7510~123.2~3.5380~4000.5
Table 1  Property index of Nextel610 Al2O3 fiber
Alloy codeMass fraction/%
SiMgCuMnTiZnOthersAl
ZL210A0.20.054.5~5.10.35~0.80.15~0.350.1Cd/Zr/FeMargin
Table 2  Chemical composition of aluminum
Fig.1  Schematic diagram of vacuum pressure impregnation
Fig.2  Tensile specimens schematic of Al2O3f/Al composite
Fig.3  Tensile specimens of fiber
Fig.4  
Fig.5  Microstructure of continuous Al2O3f/ZL210A composites with different preheating temperatures (a,b) 500℃; (c,d) 530℃; (e,f) 560℃; (g,h) 600℃
Fig.6  Surface morphology of Al2O3 fibers in different states (a) Raw silk; (b) treated by 500℃ and NaOH;(c) Extracted from Al2O3f/Al composite at 500℃ preheating temperatures; (d) Extracted from Al2O3f/ Al composite at 530℃ preheating temperatures; (e) Extracted from Al2O3f/ Al composite at 560℃ preheating temperatures; (f) Extracted from Al2O3f/ Al composite at 600℃ preheating temperatures
Fig.7  Distribution of main alloying elements in continuous Al2O3f/Al composites
Fig.8  XRD diffraction pattern of continuous Al2O3f/Al composites
Fig.9  Morphologies of interface layer of continuous Al2O3f/Al composites
Fig.10  
Fig.11  
Fig.12  Continuous Al2O3f/ZL210A tensile fracture surface with different preheating temperatures (a, b) 500℃; (c, d) 530℃; (e, f) 560℃; (g, h) 600℃
[1] MudraE, StreckovaM, KovalcikovaA, et al. Preparation of Alumina Fibers by Needle-Less Electrospinning [J]. Materials Science Forum, 2017, 891: 478
[2] QiaoJ, LiuH Y, CuiH L, et al. Preparation and application of continuous alumina fibers [J]. China Ceramics, 2015, 51(8): 1
[2] 乔 健, 刘和义, 崔宏亮等. 连续氧化铝纤维的制备及应用 [J].中国陶瓷, 2015, 51(8): 1)
[3] LiuM T, CaiX A, LiG Q. Microstructure and thermal properties of high performance reinforced matrix composites [J]. China Journal of nonferrous metals, 2013, 23 (4): 1040
[3] 刘玫潭, 蔡旭升, 李国强. 高性能增强基复合材料的显微组织和热性能 [J].中国有色金属学报, 2013, 23(4): 1040)
[4] LiD X, ZhouZ X, FanZ Y. The Al2O3p/Al particulate reinforced aluminium matrix composites with interfacial compatibility prepared by matrix alloying [J]. Journal of Metals, 2002, 38(6): 602
[4] 李斗星, 周朝霞, 樊中云. 通过基体合金化制备界面相容的Al2O3p/Al颗粒增强铝基复合材料 [J]. 金属学报, 2002, 38(6): 602)
[5] ZhaoY T, LinW L, QieX Z, et al. Ultrasonic chemical in situ synthesis of nano Al2O3/6063Al composites and high temperature creep properties[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1399
[5] 赵玉涛, 林伟立, 怯喜周等. 超声化学原位合成纳米Al2O3/6063Al复合材料组织及高温蠕变性能 [J].复合材料学报, 2015, 32(5): 1399)
[6] IrezA B, BayraktarE, MiskiogluI. Mechanical Characterization of EpoxyScrap Rubber Based Composites Reinforced with Alumina Fibers [J]. 2018
[7] LiG R, WangF F, ZhengR, et al. Mechanical properties and toughening mechanism of solid aluminium matrix composites treated by pulsed high magnetic field [J]. Chinese Journal of Materials Research, 2016, 30(10): 745
[7] 李桂荣, 王芳芳, 郑 瑞等. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30(10): 745)
[8] QiL H, MaY Q, ZhouJ M, et al. Effect of fiber orientation on mechanical properties of 2D-Cf/Al composites by liquid-solid extrusion following Vacuum infiltration technique [J]. Materials Science and Engineering A. 2015(625): 343
[9] XueL Y, WangF C, WangY W, et al. Influence of alloy elements on the mechanical properties of SiC/Al double connected composites [J]. Rare Metal Materials and Engineering, 2014, 43(8): 1908
[9] 薛辽豫, 王富耻, 王扬卫等. 合金元素对SiC/Al双连通复合材料力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43(8): 1908)
[10] LiuJ, QiL H, ZhouJ M, et al. Prediction of surface damage of Al2O(3sf)/2A12 aluminum matrix composites by liquid infiltration extrusion [J]. Chinese Journal of Materials Research, 2009, 23(06): 616
[10] 刘 健, 齐乐华, 周计明等. 液态浸渗挤压Al2O(3sf)/2A12铝基复合材料表面损伤的预测 [J]. 材料研究学报, 2009, 23(06): 616)
[11] BaiP C, PeiJ, DaiX J, et al. HRTEM study on interface structure of Al2O3/2024Al composites [J]. Rare Metal Materials and Engineering, 2009, 38(1): 1
[11] 白朴存, 裴 杰, 代雄杰等. Al2O3/2024Al复合材料界面结构的HRTEM研究[J].稀有金属材料与工程, 2009, 38(1): 1)
[12] NieM M, XuZ F, XuY J, et al. Effect of matrix alloy on interface and tensile strength of continuous SiCf/Al composite [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(3): 593
[12] 聂明明, 徐志锋, 徐燕杰等. 基体合金对连续SiCf/Al复合材料界面及拉伸强度的影响 [J]. 中国有色金属学报, 2016, 26(3): 593)
[13] XuH, ZhaoY, RenS B, et al. Microstructure and Tensile Properties of Vacuum Pressure Infiltration and Hot Pressure Sintering (SiCp+Al2O(3f))/2024Al Composites [J]. Materials Report, 2018, 32(06): 951
[13] 许 慧, 赵 洋, 任淑彬等. 真空压力熔渗与热压烧结制备(SiCp+Al2O(3f))/2024Al复合材料的组织与拉伸性能分析 [J]. 材料导报, 2018, 32(06): 951)
[14] YiZ B, FengL B, HaoX Z, et al. The effect of surface treatment on the properties of carbon fibers and their composites [J]. Chinese Journal of Materials Research, 2015, 29(01): 67
[14] 易增博, 冯利邦, 郝相忠等. 表面处理对碳纤维及其复合材料性能的影响 [J]. 材料研究学报, 2015, 29(01): 67)
[15] McWilliamsB, DibelkaJ, YenC F. Multi scale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites [J]. Materials Science and Engineering A. 2014(618): 142
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[5] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[7] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[9] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[10] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[11] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[12] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[14] ZHANG Yutuo, ZOU Hao, WANG Pei, LIU Gongmei. Effect of Molybdenum on Mechanical Properties of ZG04CR13Ni4Mo Stainless Steel[J]. 材料研究学报, 2023, 37(1): 65-69.
[15] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
No Suggested Reading articles found!