Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 898-904    DOI: 10.11901/1005.3093.2018.355
ARTICLES Current Issue | Archive | Adv Search |
Property and Cementation Mechanism of Alkali-activated Coal Gangue-slag Cementitious Materials
Hongqiang MA, Cheng YI(), Hongyu CHEN, Jing SHI, Weijian LI, Yongdong GUO
(School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)
Cite this article: 

Hongqiang MA, Cheng YI, Hongyu CHEN, Jing SHI, Weijian LI, Yongdong GUO. Property and Cementation Mechanism of Alkali-activated Coal Gangue-slag Cementitious Materials. Chinese Journal of Materials Research, 2018, 32(12): 898-904.

Download:  HTML  PDF(2350KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The geopolymer composites of coal gangue-slag were prepared with sodium hydroxide (NH) and sodium silicate (NS) as activator. The effect of slag content and NH modules on the fluidity of cement pastes and compressive strength of alkali-activated coal gangue-slag (AACGS) cementitious materials was investigated. The property of the prepared cementitious materials and the relevant cementation mechanism were investigated by means of mechanical test, XRD, FT-IR, MAS NMR and SEM-EDS. Results show that the slag content has significant effect on the pastes fluidity and compressive strength, while the NH module only has significant effect on the compressive strength of AACGS cementitious materials. Higher early strength may be produced for AACGS materials, for instance, when the slag content exceeds 20%, the 28 d strength is also higher than that of P. O42.5 pure cement. With the increase of slag content, the higher polymerization degree emerged for the silicate structure in the hydration products, which is consistent with the measured results of compressive strength. Since that Ca2+ has a stronger drive adsorption force than Na+, therewith the increase of slag content from 0 to 50% may result in denser matrix, of which the C-(A)-S-H in the microstructure has higher Ca/Si ratio but lower Al/Si ratio. The disordered network structure of AACGS, which consists of C-A-S-H gels and C-S-H gels and N-A-S-H gels, has good compatibility.

Key words:  composites      alkali-activated coal gangue-slag      paste fluidity      polymerization degree      cementation mechanism     
Received:  29 May 2018     
Fund: Supported by National Natural Science Foundation of China (No. 51578539), Beijing Natural Science Foundation Projects (No. 8164061), Open Research Project of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (No. SKLCRSM16KFD07)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.355     OR     https://www.cjmr.org/EN/Y2018/V32/I12/898

Fig.1  Coal gangue and slag particle size analysis
Materials SiO2 Al2O3 CaO Fe2O3 MgO Na2O TiO2
CG 56.56 36.78 0.62 1.95 0.22 0.42 2.10
SG 30.58 14.04 38.43 0.35 10.57 0.57 1.93
Table 1  Main chemical composition of cementitious materials (mass fraction, %)
Fig.2  XRD patterns of CG in original state and 700℃ calcination temperatures
Specimens NH solution molarity/M Binder coal gangue: slaga NH/NSa Liquid-solid ratio Paste fluidity/mm
OPC 0.36 60.0
S0-12 12 100:0 1:2 0.36 138.0
S10-12 12 90:10 1:2 0.36 147.8
S20-12 12 80:20 1:2 0.36 150.8
S30-12 12 70:30 1:2 0.36 162.3
S40-12 12 60:40 1:2 0.36 166.5
S50-12 12 50:50 1:2 0.36 170.5
S30-8 8 70:30 1:2 0.36 160.8
S30-10 10 70:30 1:2 0.36 160.5
S30-14 14 70:30 1:2 0.36 157.3
S30-16 16 70:30 1:2 0.36 160.5
Table 2  Mix proportion of alkali-activated coal gangue-slag pastes
Fig.3  Compressive strength development of AACGS specimens of different slag contents
Fig.4  Compressive strength development of AACGS specimens of different NH modulus
Fig.5  X-ray diffraction patterns of AACGS specimens with different slag contents
Fig.6  FTIR characterization of hardened paste with S0-12 and S30-12 specimens
Fig.7  29Si MAS NMR spectra for S0-12, S30-12 and S50-12 specimens
Fig.8  SEM-EDS analysis of the broken surface of AACGS pastes (a) S0-12, (b) S30-12, (c) S50-12
[1] Wang J, Wu X L, Wang J X, et al.Hydrothermal synthesis and characterization of alkali-activated slag-fly ash-metakaolin cementitious materials[J]. Micropor. Mesopor. Mater., 2012, 155: 186
[2] Li Y J, Yan X P, Zhang X, et al.Experimental research on seismic behavior of reinforced concrete column composed of coal gangue aggregate[J]. J. Chin. Coal Soc., 2013, 38: 1006(李永靖, 闫宣澎, 张旭等. 煤矸石骨料钢筋混凝土柱的抗震性能试验研究[J]. 煤炭学报, 2013, 38: 1006)
[3] Guo W, Li D X, Chen J H, et al.Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2009, 24: 326
[4] Yi C, Ma H Q, Zhu H G, et al.Study on chloride binding capability of coal gangue based cementitious materials[J]. Constr. Build. Mater., 2018, 167: 649
[5] Yi C, Ma H Q, Zhu H G, et al.Investigation on anti-carbonation performance of coal gangue coarse aggregate concrete[J]. J. Build. Mater., 2017, 20: 787(易成, 马宏强, 朱红光等. 煤矸石粗集料混凝土抗碳化性能研究[J]. 建筑材料学报, 2017, 20: 787)
[6] Ben Haha M, Le Saout G, Winnefeld F, et al.Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cem. Concr. Res., 2011, 41: 301
[7] Puertas F, Palacios M, Manzano H, et al.A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. J. Eur. Ceram. Soc., 2011, 31: 2043
[8] Cui X W, Ni W, Ren C.Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J]. Chin. J. Mater. Res., 2017, 31: 687(崔孝炜, 倪文, 任超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31: 687)
[9] Pacheco-Torgal F, Castro-Gomes J, Jalali S.Alkali-activated binders: a review: Part 1. Historical background, terminology, reaction mechanisms and hydration products[J]. Constr. Build. Mater., 2008, 22: 1305
[10] Zuda L, Drchalová J, Rovnaník P, et al.Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: mechanical and water transport properties[J]. Cem. Concr. Comp., 2010, 32: 157
[11] Huang G D, Ji Y S, Li J, et al.Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content[J]. Constr. Build. Mater., 2018, 166: 760
[12] T?nzer R, Buchwald A, Stephan D.Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag[J]. Mater. Struct., 2015, 48: 629
[13] Zhang C S, Xue J P, Fang L M.Mechanical properties and microstructures of alkali activated burned coal gangue cementitious material[J]. J. Chin. Ceram. Soc., 2004, 32: 1276(张长森, 薛建平, 房利梅. 碱激发烧煤矸石胶凝材料的力学性能和微观结构[J]. 硅酸盐学报, 2004, 32: 1276)
[14] Provis J L, Myers R J, White C E, et al.X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J]. Cem. Concr. Res., 2012, 42: 855
[15] Phair J W, van Deventer J S J. Effect of the silicate activator PH on the microstructural characteristics of waste-based geopolymers[J]. Int. J. Miner. Process., 2002, 66: 121
[16] Heikal M, Nassar M Y, El-Sayed G, et al.Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag[J]. Constr. Build. Mater., 2014, 69: 60
[17] Ismail I, Bernal S A, Provis J L, et al.Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cem. Concr. Comp., 2014, 45: 125
[18] Lancellotti I, Catauro M, Ponzoni C, et al.Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure[J]. J. Solid State Chem., 2013, 200: 341
[19] Ye H L, Radlińska A.Shrinkage mechanisms of alkali-activated slag[J]. Cem. Concr. Res., 2016, 88: 126
[20] Melo Neto A A, Cincotto M A, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cem. Concr. Res., 2008, 38: 565
[21] Cartwright C, Rajabipour F, Radlińska A.Shrinkage characteristics of alkali-activated slag cements[J]. J. Mater. Civil. Eng., 2015, 27: B4014007
[22] Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al.Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cem. Concr. Res., 2011, 41: 923
[23] Guo X L, Shi H S, Xia M.Effect of different calcium resouces on reaction mechanism of geopolymer[J]. Chin. J. Mater. Res., 2016, 30: 348(郭晓潞, 施惠生, 夏明. 不同钙源对地聚合物反应机制的影响研究[J]. 材料研究学报, 2016, 30: 348)
[24] Weng L, Sagoe-Crentsil K.Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems[J]. J. Mater. Sci., 2007, 42: 2997
[25] Zhang C S, Fang L M.Hardening mechanisms of alkali activated burned gangue cementitious material[J]. Mater. Sci. Technol., 2004, 12: 597(张长森, 房利梅. 碱激发烧煤矸石胶凝材料的硬化机理研究[J]. 材料科学与工艺, 2004, 12: 597)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!