Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 889-897    DOI: 10.11901/1005.3093.2018.341
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel
Zhentuan LI, Feng CHAI(), Caifu YANG, Xiaobing LUO, Li YANG, Hang SU
(Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China)
Cite this article: 

Zhentuan LI, Feng CHAI, Caifu YANG, Xiaobing LUO, Li YANG, Hang SU. Effect of Quenching on Mechanical Property of Ultra-high Strength Marine Engineering Steel. Chinese Journal of Materials Research, 2018, 32(12): 889-897.

Download:  HTML  PDF(10308KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of quenching processes on the mechanical property and microstructure of a newly designed ultra-high strength marine engineering steel of low carbon (C<0.05) NiCrMo was investigated by means of thermo-Calc software, optical microscopy, scanning and transmission electron microscopy. Results show that secondary hardening occurred for the steel quenched from 910℃ and then aged at 525℃, resulting in a maximum peak hardness was 369 HV, while secondary martensite microstructures emerged for the steel quenched from 910℃ and then aged at 700℃ by air cooling, resulting in a peak hardness 361 HV. Thermo-Calc calculation result revealed that the mean particle radius of (Nb, Ti)C was obviously reduced with the decreasing quenching temperature within the range of 820~910℃, and the refined (Nb, Ti) C particles could effectively suppress the growth of austenite grains, thus improving grain boundary density of high or low angle in the matrix, which led to the increment of strength and toughness. Among others, the steel quenched from 820℃ presents the highest strength up to 1084 MPa, impact energy of 76 J for V-type impact test at -80℃, and the fracture fiber rate was up to 100%. Fractograph- and crack propagation-observation showed that the refinement of microstructure and second phase could hinder the expansion and fracture of dimples, while the refined martensite packet and block could significantly alter the crack propagation direction. Finally, the steel quenched from 820℃ presents the maximum unit length of 15 μm for the crack propagation path, implying a high toughness of the steel.

Key words:  metallic materials      low carbon ultra-high strength marine engineering steel      quenching temperature      microstructure refinement      crack propagation     
Received:  20 May 2018     
Fund: Supported by National Basic Research Program of China (No. 2017YFB0703002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.341     OR     https://www.cjmr.org/EN/Y2018/V32/I12/889

Component C Si Mn P S Ni Cr+Mo +V Nb+Ti
Content <0.05 0.08 0.52 ≤0.002 0.004 9.2 <1.5 0.05
Table 1  Chemical composition of the tested steel (mass fraction, %)
Fig.1  Relationship between hardness of alloy and aging temperatures
Fig.2  Microstructure of alloys with different aging temperature (a) 450℃, (b) 525℃, (c) 600℃, (d) 700℃
Fig.3  Effect of quenching temperature on mechanical property of the tested steel (a) effect of quenching temperature on strength, (b) effect of quenching temperature on -80℃ Akv
Fig.4  Grain, microstructure morphology and grain size distribution frequency of alloy with different quenching temperatures (a, b) grain morphology of 820℃ and 910℃ quenching; (c, d) microstructure morphology of 820℃、910℃ quenching, (e) grain size distribution frequency image
Fig.5  Effect of aging temperature on microstructure of sample (a) rich zone of lath and grain boundary alloying elements; (b) spectrum analysis image; (c) morphology of reversed austenite at 600℃ aging; (d) selected-area electron diffraction of position A
Fig.6  Content of each phase of sample in the equilibrium state
Fig.7  TEM morphology of (Nb,Ti)C and energy spectrum analysis image (a) morphology of (Nb,Ti)C; (b) spectrum analysis image
Fig.8  Effect of quenching temperature and time on mean radius of (Nb,Ti)C
Fig.9  Grain boundary distribution maps of sample after quenching at 820℃ (a) and 910℃ (b)
Fig.10  Grain boundary density distribution map of sample with different quenching temperature
Fig.11  Fractographs of impact toughness tested samples (a, b) macroscopic and microscopic fractograph at 550℃ aging after 820℃ quenching; (c, d) macroscopic and microscopic fractograph at 550℃ aging after 910℃ quenching; (e) morphology of (Nb,Ti)(N,C) in the dimple; (f) spectrum analysis
Fig.12  SEM image and EBSD analysis of crack propagation of 820℃ quenching (a) 820℃ SEM image; (b) 820℃ EBSD image; (c) point-to-point misorientation of AB line; (d) point-to-point misorientation of CD line
[1] Lei X W, Huang J H, Chen S H, et al.Current status and trend of ultra-high strength hull structural steels[J]. Mater. Sci. Technol., 2015, 23(4): 7(雷玄威, 黄继华, 陈树海等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4): 7)
[2] Gao Z Y, Pan T, Wang Z, et al.Composition optimization design of boron-microalloying ultra-heavy plate steel with high hardenability[J]. Chin. J. Eng., 2015, 37: 447(高志玉, 潘涛, 王卓等. 高淬透性硼微合金化特厚板钢成分优化设计[J]. 工程科学学报, 2015, 37: 447)
[3] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and Mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[4] Iorio L E, Garrison W M Jr. The effects of titanium additions on AF1410 ultra-high-strength steel[J]. Metall. Mater. Trans., 2006, 37A: 1165
[5] Manigandan K, Srivatsan T S, Tammana D, et al.Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Mater. Sci. Eng., 2014, 601A: 29
[6] Mujahid M, Lis A K, Garcia C I, et al. HSLA-100 steels: Mcrostructure and properties [J]. Key Eng. Mater., 1993, 84-85: 209
[7] Hou J P, Pan T, Zhu Y G, et al.Effect of inter-critical quenching process on mechanical property and microstructure of 9Ni cryogenic steel[J]. Trans. Mater. Heat Treat., 2014, 35(10): 88(侯家平, 潘涛, 朱莹光等. 临界淬火工艺对9Ni低温钢力学性能及精细组织的影响[J]. 材料热处理学报, 2014, 35(10): 88)
[8] Song P C, Liu W B, Liu L, et al.Austenite growth behavior of Fe-13Cr-5Ni martensitic stainless steel under continuous heating[J]. Chin. J. Eng., 2017, 39: 68(宋鹏程, 柳文波, 刘璐等. Fe-13Cr-5Ni马氏体不锈钢在连续加热过程中两相区的奥氏体生长行为[J]. 工程科学学报, 2017, 39: 68)
[9] Yong Q L.Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006)
[10] Dere E G, Sharma H, Petrov R H, et al.Effect of niobium and grain boundary density on the fire resistance of Fe-C-Mn steel[J]. Scr. Mater., 2013, 68: 651
[11] Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater., 2003, 51: 1789
[12] Wang C F, Wang M Q, Shi J, et al.Effect of microstructural refinement on the toughness of low carbon martensitic steel[J]. Scr. Mater., 2008, 58: 492
[13] Tong M W, Venkatsurya P K C, Zhou W H, et al. Structure-mechanical property relationship in a high strength microalloyed steel with low yield ratio: The effect of tempering temperature[J]. Mater. Sci. Eng., 2014, 609A: 209
[14] Shen J C, Luo Z J, Yang C F, et al.“Effective grain size” affecting low temperature toughness in lath structure of HSLA steel[J]. J. Iron Steel Res., 2014, 26(7): 70(沈俊昶, 罗志俊, 杨才福等. 低合金钢板条组织中影响低温韧性的“有效晶粒尺寸”[J]. 钢铁研究学报, 2014, 26(7): 70)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!