Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 945-950    DOI: 10.11901/1005.3093.2018.302
ARTICLES Current Issue | Archive | Adv Search |
Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO
Xiangming FANG1,2, Zhi ZENG2, Shiyong GAO2(), Wenqiang LI2, Jinzhong WANG2
1 Department of Physics, Taiyuan University, Taiyuan 030032, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Xiangming FANG, Zhi ZENG, Shiyong GAO, Wenqiang LI, Jinzhong WANG. Low-temperature Preparation and Photocatalytic Activity of Eco-friendly Nanocone Forest-like Arrays of ZnO. Chinese Journal of Materials Research, 2018, 32(12): 945-950.

Download:  HTML  PDF(4081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocone arrays of ZnO were synthesized on Zn foil via a simple low temperature (60OC) hydrothermal route. The morphology, structure and composition of the prepared nanocone arrays were characterized by means of scanning electron microscopy, X-ray diffractometer and energy disperse spectroscopy. Results show that the surface of Zn-substrate was fully covered by clustered ZnO-nanocones and standalone ZnO-nanocones, the nanocone arrays of ZnO are of high purity and high degree of crystallinity. The prepared nanocone arrays of ZnO exhibit good photocatalytic performance for aqueous solutions of methyl orange and methylene blue, indicating that the nanocone arrays of ZnO may be a general purpose photocatalyst for the degradation of different dyes. Furthermore, the possible growth and photocatalytic mechanisms of the nanocone arrays of ZnO were also analyzed.

Key words:  inorganic non-metallic materials      ZnO nanocone      hydrothermal      photocatalytic activity     
Received:  27 April 2018     
Fund: Supported by Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-Q16104)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.302     OR     https://www.cjmr.org/EN/Y2018/V32/I12/945

Fig.1  Low magnification morphology SEM image (a), high magnification morphology SEM image (b), high magnification morphology SEM image at bottom (c) and EDS of ZnO nanocone arrays grown on Zn foil (d)
Fig.2  XRD patterns of ZnO nanocone forest-like arrays (a) and Zn foil (b)
Fig.3  SEM images of the ZnO nanocone prepared with 1 h (a), 3 h (b), 6 h (c) and 9 h (d)
Fig.4  Schematic illustration of the growing process for ZnO nanocone forest-like arrays
Fig.5  Absorption spectra of MO solution (a) and MB solution (b) with ZnO nanocone forest-like arrays
Fig.6  Schematic diagram of (a) reflection between ZnO nanocone (b) photocatalytic mechanism of ZnO nanocone
[1] Tang Y, Zhao Y, Zhang Z G, et al.Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays[J]. Chin. J. Mater. Res., 2015, 29(7): 529(汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及性能[J]. 材料研究学报,2015, 29(7): 529)
[2] Chen Y L, Wang L J, Wang W Z, et al.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method[J]. Appl. Catal. B., 2017, 209: 110
[3] Cao M S, Song W L, Zhou W, et al.Dynamic compressive response and failure behavior of fiber polymer composites embedded with tetra-needle-like ZnO nanowhiskers[J]. Compos. Struct., 2010, 92(12): 2984
[4] Cao M S, Shi X L, Fang X Y, et al.Microwave absorption properties and mechanism of cagelike ZnO/SiO2, nanocomposites[J]. Appl. Phys. Lett., 2007, 91(20): 203110
[5] Cao M S, Zhou W, Shi X L, et al.Dynamic response and reinforcement mechanism of composites embedded with tetraneedlelike ZnO nanowhiskers[J]. Appl. Phys. Lett., 2007, 91(2): 021912
[6] Lin H B, Cao M S, Zhao Q L, et al.Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers[J]. Scr. Mater., 2008, 59(7): 780
[7] Srivastava A, Kumar N.Effect of substrate temperature on (00l) oriented growth of ZnO nanostructures on fused quartz substrate by PLD[J]. J. Mater. Sci: Mater. Electron., 2017, 28(13): 9258
[8] Kennedy O W, Coke M L, White E R, et al.MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction[J]. Mater. Lett., 2018, 212: 51
[9] Mahdhi h, Djessas k, Ben Ayadi Z. Synthesis and characteristics of Ca-doped ZnO thin films by rf magnetron sputtering at low temperature[J]. Mater. Lett., 2018, 214: 10
[10] Lee W J, Lee G H.Morphological variation and luminescence properties of ZnO micro/nanocrystals synthesized by thermal evaporation method[J]. Korean J. Mater. Res., 2017, 27(10): 530
[11] Son H S, Choi N J, Kim K B, et al.Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition[J]. Mater. Res. Bull., 2016, 82: 50
[12] Qu X, Yang R, Zhao Y, et al.A controllable hydrothermal fabrication of hierarchical ZnO microstructures and its gas sensing properties[J]. J. Mater. Sci: Mater. Electron., 2018, 29(6): 5143
[13] Zhao X H, Li M, Lou X D.Sol-gel assisted hydrothermal synthesis of ZnO microstructures: Morphology control and photocatalytic activity[J]. Adv. Powder Technol., 2014, 25(1): 372
[14] Wang S, Kuang P Y, Cheng B, et al.ZnO hierarchical microsphere for enhanced photocatalytic activity[J]. J. Alloys Compd., 2018, 741: 622
[15] Wang Y X, Yang Y Q, Xi L M, et al.A simple hydrothermal synthesis of flower-like ZnO microspheres and their improved photocatalytic activity[J]. Mater. Lett., 2016, 180: 55
[16] Quintana A, Gómez A, Baró M D, et al.Self-templating faceted and spongy single-crystal ZnO nanorods: Resistive switching and enhanced piezorespons[J]. Mater. Des., 2017, 133: 54
[17] Turgut G, Duman S, ?z?elik F S, et al.An investigation of Zn/ZnO:Al/p-Si/Al heterojunction diode by sol-gel spin coating technique[J]. J. Sol-Gel Sci. Technol., 2014, 71(3): 589
[18] Zhao Y N, Cao M S, Jin H B, et al.Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs[J]. Scr. Mater., 2006, 54(12): 2057
[19] Tan W K, Razak K A, Lockman Z, et al.Formation of highly crystallized ZnO nanostructures by hot-water treatment of etched Zn foils[J]. Mater. Lett., 2013, 91: 111
[20] Tan W K, Razak K A, Lockman Z, et al.Optical properties of two-dimensional ZnO nanosheets formed by hot-water treatment of Zn foils[J]. Solid State Commun., 2013, 162: 43
[21] Maya-Trevi?o M L, Guzmán-Mar J L, Hinojosa-Reyes L, et al. Synthesis and photocatalytic activity of ZnO-CuPc for methylene blue and potassium cyanide degradation[J]. Mater. Sci. Semicond. Process., 2018, 77: 74
[22] Chen Y, Zhang P, Shang Y H, et al.Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio[J]. Chin. J. Mater. Res., 2017, 31(8): 619(陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能[J]. 材料研究学报, 2017, 31(8): 619)
[23] Chen Y C, Cheng J N, Cheng J, et al.L-Arginine assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance[J]. J. Mater. Sci: Mater. Electron., 2015, 26(5): 2775
[24] Wang R, Kong X Y, Zhang W T, et al.Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Appl. Catal. B, 2018, 225: 228
[25] Meena S, Vaya D, Das B K.Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial[J]. Bull. Mater. Sci., 2016, 39(7): 1735
[26] Dong B, Yu X X, Dong Z F, et al.Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue[J]. J. Sol-Gel Sci. Technol., 2017, 82(1): 167
[27] Chen Y L, Wang L J, Wang W Z, et al.Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties[J]. Mater. Chem. Phys., 2017, 199: 416
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
No Suggested Reading articles found!