Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (8): 561-566    DOI: 10.11901/1005.3093.2018.107
ARTICLES Current Issue | Archive | Adv Search |
Small Size Specimen Evaluation Method for Fracture Toughness KIC of High Strength Steel
Qiqiang DUAN1,2, Bin WANG2, Peng ZHANG1,2(), Ruitao QU1,2(), Zhefeng ZHANG1,2
1 University of Chinese Academy of Sciences, Beijing 100049, China.
2 Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
Cite this article: 

Qiqiang DUAN, Bin WANG, Peng ZHANG, Ruitao QU, Zhefeng ZHANG. Small Size Specimen Evaluation Method for Fracture Toughness KIC of High Strength Steel. Chinese Journal of Materials Research, 2018, 32(8): 561-566.

Download:  HTML  PDF(3636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ABSTRAT In the present study, the 0Cr13Ni8Mo2Al precipitation hardening high strength steel was selected as the experimental material, and the fracture morphologies and the relevant mechanisms of fracture toughness specimens with different sizes were studied. Results show that, according to the difference of fracture mechanisms, the tensile fracture region of fracture toughness specimens can be divided into crack slow propagation zone (cleavage zone) and fast propagation zone (dimple zone); and the fracture energy is mainly consumed in the crack slow propagation zone. A small size specimen evaluation method for fracture toughness KIC was established in this study, and the relative error between the fracture toughness KIC value obtained with this method and that with the standard specimen is 9%. This means that the fracture toughness KIC value of the metallic materials obtained with the small size specimen evaluation method is very reliable.

Key words:  metallic materials      high strength steel      small size specimen      fracture mechanisms      fracture toughness KIC     
Received:  16 January 2018     
ZTFLH:  TG142  
Fund: Supported by National Natural Science Foundation of China (Nos. 51331007, U1664253 & 51771205)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.107     OR     https://www.cjmr.org/EN/Y2018/V32/I8/561

Materials Yield strength,
σy /MPa
Fracture toughness,
KIC /MPam1/2
Thickness,
B/mm
Maximum load required for test, Fmax /kN
CM400 2583 32 0.38 0.04
40CrNiMoA 1334 90 11.4 16.4
30SiMn2MoVA 1216 113 21.6 53.8
14MnMoNbB 834 159 90.9 653.6
30Cr2MoV 549 148 181.7 1719.4
18MnMoNiCr 490 276 793.2 29246.5
Table 1  Mechanical properties of several steels[4, 5] and conditions required for fracture toughness KIC test
Serial number Thickness,
B/mm
Width,
W/mm
Span,
S/mm
B25 25.07 50.07 200
B12-1 11.97 23.99 96
B12-2 12.02 24.03 96
B8-1 7.99 16.02 64
B8-2 8.04 16.10 64
B6-1 6.03 12.00 48
B6-2 6.03 12.03 48
B4-1 4.04 8.00 32
B4-2 4.01 8.07 32
Table 2  Dimensions of fracture toughness specimens
Serial number Pre-crack length, a /mm FQ /kN KQ /MPam1/2 Whether to satisfy the criterion (Yes/No)
B25 26.35 57.02 118 Yes
B12-1 11.78 20.14 113 No
B12-2 11.91 18.53 105 Yes
B8-1 7.71 9.42 93 No
B8-2 7.83 9.56 95 No
B6-1 6.05 5.66 92 No
B6-2 6.21 3.79 64 No
B4-1 4.06 2.78 84 No
B4-2 4.56 1.74 63 No
Table 3  The experimental results of fracture toughness
Fig.1  Force-displacement curves of fracture specimens with different dimensions
Fig.2  Macroscopic fracture morphologies of fracture toughness specimens with different dimensions (a) B4; (b) B6; (c) B8; (d) B12; (e) B25
Fig.3  Microscopic fracture morphologies of fracture toughness specimens
Fig.4  Schematic of fracture surface for crack slow propagation region
Fig.5  Relationship between the specimen thickness (B) and KQ
[1] Shu D L.Mechanical Properties of Engineering Materials [M]. 3rd ed. Beijing: China Machine Press, 2016(束德林. 工程材料力学性能 [M]. 第3版. 北京: 机械工业出版社, 2016)
[2] Shi X H, Zeng W D, Zhao Q Y.The effect of surface oxidation behavior on the fracture toughness of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. J. Alloys Compd., 2015, 647: 740
[3] Alexopoulos N D, Tiryakio?lu M.Relationship between fracture toughness and tensile properties of A357 cast aluminum alloy[J]. Metall. Mater. Trans., 2009, 40A: 702
[4] Ding S D.Fracture Mechanics [M]. Beijing: China Machine Press, 1997(丁遂栋. 断裂力学[M]. 北京: 机械工业出版社, 1997)
[5] Wang W, Yan W, Duan Q Q, et al.Study on fatigue property of a new 2.8GPa grade maraging steel[J]. Mater. Sci. Eng., 2010, 527A: 3057
[6] Cui Z Y.Testing Principle and Method of Fracture Toughness [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1981(崔振源. 断裂韧性测试原理和方法 [M]. 上海: 上海科学技术出版社, 1981)
[7] Duan Q Q, Qu R T, Zhang P, et al.Intrinsic impact toughness of relatively high strength alloys[J]. Acta Mater., 2018, 142: 226
[8] Li L, Cao F, Wang Y L, et al.Analysis on low temperature impact toughness and fracture morphologies of X90 pipeline steel[J]. Heat Treat. Met., 2015, 40: 190(李亮, 曹峰, 王亚龙等. X90管线钢的低温冲击韧性和断口形貌分析[J]. 金属热处理, 2015, 40: 190)
[9] Wang Y Q, Lin Y, Zhang Y N, et al.Experimental study on the impact toughness of Q460-C high-strength construction steel at low temperature[J]. Ind. Construct., 2012, 42: 8(王元清, 林云, 张延年等. 高强度结构钢材Q460-C低温冲击韧性试验研究[J]. 工业建筑, 2012, 42: 8)
[10] Wang B, Zhang P, Duan Q Q, et al.Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment[J]. Mater. Sci. Eng., 2017, 707A: 674
[11] Sha W, Chen Z,Geriletu X X X, et al. Tensile and impact properties of low nickel maraging steel[J]. Mater. Sci. Eng., 2013, 587A: 301
[12] Qu R T, Zhang Z J, Zhang P, et al.Generalized energy failure criterion[J]. Sci. Rep., 2016, 6: 23359
[13] Zhu X K, Joyce J A.Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization[J]. Eng. Fract. Mech., 2012, 85: 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!