Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 533-540    DOI: 10.11901/1005.3093.2017.642
ARTICLES Current Issue | Archive | Adv Search |
Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment
Dalei ZHANG(), Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN
College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
Cite this article: 

Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment. Chinese Journal of Materials Research, 2018, 32(7): 533-540.

Download:  HTML  PDF(3794KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen permeation and embitterment behavior of hot-dip galvanized steel with different amount of sulphite deposits on surface exposed to stimulant marine atmospheric environment was investigated. The hydrogen embrittlement susceptivity of the steel in this environment was assessed through measuring the hydrogen permeation current by an improved Devanathan-Stachurski cell and the elongation of the galvanized steel at break, while observing the morphology of the fractured surface. Results indicated that the hydrogen permeation current gradually increased with the increasing amount of deposits. On the other hand, it was found that hydrogen absorption was accelerated by the synergistic effect of cathodic protection and the existed damage of zinc coating induced by scratching. The adsorbed hydrogen can reduce the elongation of the steel at break. This means that sulphite can reduce the toughness of hot-dip galvanized steel, resulting in hydrogen damage.

Key words:  material failure and protection      hydrogen permeation      atmospheric corrosion      slow strain rate tensile test      hot-dip galvanized coating      hydrogen embrittlement     
Received:  30 October 2017     
ZTFLH:  TG174.41  
  TG174.3+1  
Fund: Supported by National Natural Science Foundation of China (No. 51774314), Fundamental Research Funds for the Central Universities of China (No. 16CX05011A)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.642     OR     https://www.cjmr.org/EN/Y2018/V32/I7/533

Element C Si Mn S P Al Fe
Mass fraction/% 0.03 0.17 0.50 0.25 0.035 0.002 Bal.
Table 1  Chemical composition of steel substrate for galvanized steels
Fig.1  Schematic diagram of tensile specimen
Fig.2  Hydrogen permeation current densities chart of galvanized steel with perfect zinc coating and deposition of different amounts of Na2SO3 on surface (30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.300 0.699 1.091
Average current density / μA·cm-2 0.141 0.323 0.396
Table 2  Maximum and average values of hydrogen permeation current densities of galvanized steel with perfect zinc coating and deposition of different amounts of Na2SO3 on surface (30℃, 80%RH)
Fig.3  Hydrogen permeation current densities of galvanized steel with 4 mm coating defect and deposition of different amounts of Na2SO3on surface (30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.773 1.118 1.991
Average current density / μA·cm-2 0.323 0.471 0.480
Table 3  Maximum and average values of hydrogen permeation current densities of galvanized steel with 4 mm coating defect and deposition of different amounts of Na2SO3 on surface (30℃, 80%RH)
Fig.4  Hydrogen permeation current densities of galvanized steel with 10 mm coating defect and deposition of different amounts of Na2SO3 on surface (30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.092 1.704 2.959
Average current density / μA·cm-2 0.052 0.686 1.567
Table 4  Maximum and average values of hydrogen permeation current density for galvanized steel with 10 mm coating defect with different amount of Na2SO3 on surface (30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Without defect 0.091 0.108 0.145
4 mm defect 0.130 0.128 0.193
10 mm defect 0.025 0.388 0.911
Table 5  Hydrogen permeation capacities of galvanized steel in different environmental conditions (C)
Fig.5  Stress-strain curves for galvanized steel
Type of test Tensile strength/MPa Elongation after fracture/% Change rate of elongation/%
B1 363.6 22.62 -
B2 364.1 22.18 -1.95
B3 367.2 21.71 -4.02
B4 365.0 21.15 -6.49
B5 361.4 20.91 -7.56
Table 6  Mechanical properties of galvanized steel
Fig.6  Morphologies of fracture surface of B1 sample (a) center; (b) fringe
Fig.7  Morphologies of fracture surface of B4 sample (a) center; (b) fringe
Fig.8  Morphologies of fracture surface of B5 sample (a) center; (b) fringe
[1] Wang X M.Research on corrosion behavior of zinc in the atmosphere via atmospheric corrosion monitor [D]. Ji'nan:Shandong University, 2016(王晓明. 基于大气腐蚀检测仪的锌在大气环境中腐蚀行为的研究[D]. 济南: 山东大学, 2016)
[2] Huang Y L, Zheng C B.Theory and Application of Hydrogen Embrittlement of Steel Atmospheric Corrosion in Marine Environment [M]. Beijing: Science Press, 2016(黄彦良, 郑传波. 海洋大气腐蚀环境下钢材氢脆理论及应用 [M]. 北京: 科学出版社, 2016)
[3] Zheng C B, Huang Y L, Wang X, et al.Effect of SO2 in marine atmosphere on corrosion, fracture and hydrogen permeation of 16Mn steel[J]. Mater. Protect ., 2011, 44(5): 34(郑传波, 黄彦良, 王旭等. 海洋大气中SO2含量对16Mn钢腐蚀断裂及渗氢行为的影响[J]. 材料保护, 2011, 44(5): 34)
[4] Narkevi?ius A, Bu?inskien? D, Ru?inskien? A, et al.Study on long term atmospheric corrosion of electrodeposited zinc and zinc alloys[J]. Trans. IMF, 2013, 91: 68
[5] Li S X, Hihara L H.In situ Raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel[J]. J. Electrochem. Soc ., 2012, 159: C147
[6] Yadav A P, Nishikata A, Tsuru T.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness[J]. Corros. Sci ., 2004, 46: 169
[7] Zhang J, Yu Z H, Li Y.Corrosion behavior of hot-dipped Zn-55%Al-Si coated steel wires in seawater[J]. Chin. J. Mater. Res ., 2008, 22(4): 347(张杰, 于振花, 李焰. Zn-55%Al-Si合金镀层钢丝在海水中的耐蚀性能[J]. 材料研究学报, 2008, 22(4): 347)
[8] Liao J Y.Analysis on the Invalidation of Metal [M]. Beijing: Chemical Industry Press, 2003: 211(廖景娱. 金属构件失效分析 [M]. 北京: 化学工业出版社, 2003: 211)
[9] Zhang D L, Li Y.Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chinese J. Mater. Res ., 2009, 23: 592(张大磊, 李焰. 热镀锌钢材在海洋大气环境中的氢渗透行为[J]. 材料研究学报, 2009, 23: 592)
[10] Zhang D L, Li Y.Effect of humidity on hydrogen embrittlement susceptivity of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chin. J. Nonferrous Met ., 2010, 20: 476(张大磊, 李焰. 湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响[J]. 中国有色金属学报, 2010, 20: 476)
[11] GB/T 228-2002 228-2002. Metallic materials—Tensile testing at ambient temperature [S]. Beijing: China Standard Publishing House, 2002(GB/T 228-2002 228-2002. 金属材料室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002)
[12] GB/T 228.1-2010. Metallic materials-tensile testing-part 1: Method of test at room temperature [S]. Beijing: China Standard Publishing House, 2011(GB/T 228.1-2010. 金属材料拉伸试验第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2011)
[13] Zhang J B, Wang J, Wang Y H.The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion[J]. Mar. Sci ., 2005, 29(7): 17(张际标, 王佳, 王燕华. 海盐粒子沉积下碳钢的大气腐蚀初期行为[J]. 海洋科学, 2005, 29(7): 17)
[14] Neufeld A K, Cole I S, Bond A M, et al.The initiation mechanism of corrosion of zinc by sodium chloride particle deposition[J]. Corros. Sci ., 2002, 44: 555
[15] Zhang D L, Wang W, Jin Y H, et al.Wire beam electrode technique for investigating galvanic corrosion behavior of galvanized steel-spot defect[J]. Chin. J. Nonferrous Met ., 2011, 21: 2168(张大磊, 王伟, 金有海等. 丝束电极研究镀锌层存在点缺陷的锌/钢电偶腐蚀行为[J]. 中国有色金属学报, 2011, 21: 2168)
[16] Yadav A P, Nishikata A, Tsuru T.Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions[J]. Corros. Sci ., 2004, 46: 361
[17] Hajjami A E, Gigandet M P, De Petris-Wery M, et al. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68[J]. Appl. Surf. Sci ., 2008, 255: 1654
[18] Wen L, Jin Y, Cheng J, et al.Galvanic corrosion behavior of zinc/steel couple under thin electrolyte layer[J]. ECS Trans ., 2014, 58: 13
[19] Zhou P W, Li W, Jin X J.Comparison of hydrogen permeation properties of pure Ni, Ni-MoS2, Ni-graphene composite coatings deposited on quenching and partitioning steel and the hot-dipping galvanized steel[J]. J. Electrochem. Soc ., 2017, 164: D394
[20] Zheng C, Huang Y, Huo C, et al.Hydrogen permeation behavior and corrosion monitoring of steel in cyclic wet-dry atmospheric environment[J]. Mater. Corros ., 2007, 58: 716
[21] Yamabe J, Yoshikawa M, Matsunaga H, et al.Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment[J]. Int. J. Fatigue, 2017, 102: 202
[22] Liang Y, Ahn D C, Sofronis P, et al.Effect of hydrogen trapping on void growth and coalescence in metals and alloys[J]. Mech. Mater ., 2008, 40: 115
[23] Recio F J, Alonso M C, Gaillet L, et al.Hydrogen embrittlement risk of high strength galvanized steel in contact with alkaline media[J]. Corros. Sci ., 2011, 53: 2853
[1] ZHANG Botao, LI Shuhui, LI Yongfeng, HAN Guofeng. Effect of Stress Triaxiality on Hydrogen Embrittlement Susceptibility of Quenched Boron Steel B1500HS[J]. 材料研究学报, 2022, 36(10): 739-746.
[2] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[3] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[4] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[5] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[6] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
[7] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[8] Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. 材料研究学报, 2018, 32(8): 631-640.
[9] Dan ZHANG, Zhenyao WANG, Yongzhang ZHOU, Yuwei LIU, Qi YIN, Gongwang CAO. Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake[J]. 材料研究学报, 2018, 32(4): 255-262.
[10] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[11] Shasha WANG,Lang YANG,Yunhua HUANG,Kui XIAO,Xiaogang LI. Initial Corrosion Behavior in Different Atmospheric Environments of 6061Al Alloy Anodized in Boron-sulfuric Acid Solution[J]. 材料研究学报, 2017, 31(1): 49-56.
[12] TONG Jian, CHEN Jiaqi, ZHENG Zhi, YU Yongsi, NING Likui, LIU Enze. Effect of Leaching Process for Ceramic Core on Micro-structure and Mechanical Property of Investment Cast Co-base Superalloy DZ40M[J]. 材料研究学报, 2016, 30(2): 141-148.
[13] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[14] Ran XU,Yanhua WANG,Jia WANG,Zaijian LIU,Yuan ZHANG. Influence of Spreadability of Seawater Droplet on Electrochemical Characteristics of Carbon Steel[J]. 材料研究学报, 2015, 29(2): 95-100.
[15] JIA Zhijun DU Cuiwei LIU Zhiyong GAO Jin LI Xiaogang. Effect of pH on the Corrosion and Electrochemical Behavior of 3Cr Steel in CO2 Saturated NaCl Solution[J]. 材料研究学报, 2011, 25(1): 39-44.
No Suggested Reading articles found!