Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 371-380    DOI: 10.11901/1005.3093.2017.627
ARTICLES Current Issue | Archive | Adv Search |
Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃
Yang LV1, Donghui WEN1, Zhenhua WANG1, Qing WANG1(), Rui TANG2, Huan HE3
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3 Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Nanning 530004, China
Cite this article: 

Yang LV, Donghui WEN, Zhenhua WANG, Qing WANG, Rui TANG, Huan HE. Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃. Chinese Journal of Materials Research, 2018, 32(5): 371-380.

Download:  HTML  PDF(8791KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural stability and second-phase precipitation of austenitic stainless steels (ASSs) with high Cr and Ni contents at high temperatures affect their mechanical property directly. The effect of minor-addition of Mo, Nb, Ta, and Ti on the second-phase precipitation in a low-carbon 310S stainless steel (Fe-25Cr-22Ni-0.046C, %, mass fraction) has been investigated in the present work. Alloy ingots were prepared by vacuum arc melting, and hot rolled at 1150℃ for multiple passes into sheets. The sheet samples were then heat-treated in sequence: solid-solution at 1150℃ for 0.5 h followed by water cooling, stabilization at 900℃ for 0.5 h followed by furnace cooling, and aging treatment at 700℃ for different times (25~408 h). The steels were characterized by means of XRD, OM, SEM and TEM. Their mechanical property were examined after different treatments. Experimental results show that the co-addition of minor Mo/Nb/Ta/Ti improves the strength of the steels. However, the brittle σ-phase began to appear at the early stage of stabilization process in the Mo/Nb/Ta/Ti-modified steel, while it was not existed in the master steel 310S. During the aging process, the content of σ-phase particles increases with the increase of aging time, and the coarse Cr23C6 particles will be dissolved finally, which will deteriorate the mechanical property of the steels. Both the types and amounts of minor-alloying elements affect the second-phase precipitation, and then the microstructural stability.

Key words:  metallic materials      austenitic stainless steels      310S alloy      micro-alloying      phase precipitation      microstructural stability     
Received:  20 October 2017     
Fund: Supported by International Science & Technology Cooperation Program of China (No. 2015DFR60370), Fundamental Research Funds for the Central Universities (No. DUT16ZD212), International Thermonuclear Experimental Reactor (ITER) Program of China (No. 2015GB121004), National Key Research and Development Plans (Nos. 2017YFB0702400 & 2017YFB0306100), Open Fund Project of Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials (No. GXKFJ16-11)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.627     OR     https://www.cjmr.org/EN/Y2018/V32/I5/371

Fe Ni Cr Mo C Nb Ti Ta Mn Si
310S 51.517 22.420 24.827 0.000 0.046 0.000 0.000 0.000 0.787 0.402
M-310S 50.362 22.287 24.680 1.093 0.046 0.088 0.091 0.172 0.782 0.400
Table 1  Chemical composition of alloys (%, mass fraction)
Fig.1  XRD spectra of 310S and M-310S alloys after solid-solution and 408 h-aging treatments at 700℃
Fig.2  OM (a) and SEM (b) images of M-310S alloy after solid solution treatment
Fig.3  OM and SEM images of the microstructure in 310S (a, b) and M-310S (c, d) after stabilization treatment at 900℃ for 0.5 h
Fig.5  OM and SEM images of the microstructure inM-310Salloy and agedat 700℃ for 25 h (a1 and a2), 50 h (b), 100 h (c), 200 h (d), 300 h (e) and 408 h (f1 and f2)
Fig.4  OM and SEM images of 310S aged at 700℃ for 25 h (a1 and a2), 50 h (b), 100 h (c), 200 h (d), 300 h (e) and 408 h (f1 and f2)
No. 25 h-aging 200 h-aging 408 h-aging
Cr23C6 σ f Cr23C6 σ f Cr23C6 σ f
/μm /μm /% /μm /μm /% /μm /μm /%
310S 0.5~2 0.33 0.5~2 0.92 0.5 ~2 1~2.5 1.99
M-310S 0.5~2 0.5~2.5 1.38 0.5~4 2.37 0.5~4 4.49
Table 2  Summary of types, sizes, and volume fractions (f) of the precipitated particles in the 310S and M- 310S alloys at different aging time
Fig.6  TEM bright-field images and SAED patterns of the σ-FeCr (a) and (Ta,Nb,Ti)C (b) in the aged M-310S alloy for 408 h
Fig.7  Engineering tensile stress-strain curves of the stabilized alloys at room temperature
Fig.8  Variation tendency of the microhardness HVwith the aging time at 700℃ of 310S and M-310S alloys, in which the HV values at stabilization are taken as the ones of 0 h aging
[1] Zhang L F, Zhu F W, Tang R.Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor[J]. Front. Energy Power Eng. China, 2009, 3: 233
[2] Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371: 176
[3] Qian J, Chen C F, Yu H B, et al.The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310 S stainless steel[J]. Corros. Sci., 2016, 111: 352
[4] Jiao Y, Zheng W, Guzonas D A, et al.Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water[J]. J. Nucl. Mater., 2015, 464: 356
[5] Baindur S.Materials challenges for the supercritical water-cooled reactor (SCWR)[J]. Bull. Can. Nucl. Soc., 2008, 29: 32
[6] Larsen K R.Alumina-forming austenitic alloys resist high-temperature corrosion[J]. Mater. Perform., 2015, 54(9): 30
[7] Zinkle S J, Was G S.Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61: 735
[8] Xu S, Amirkhiz B S.Mechanical properties of fuel cladding candidate alloys for Canadian SCWR concept[J]. JOM, 2016, 68: 469
[9] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
[10] Zhang Q, Tang R, Yin K J, et al.Corrosion behavior of Hastelloy C-276 in supercritical water[J]. Corros. Sci., 2009, 51: 2092
[11] Luo X, Tang R, Long C S, et al.Corrosion behavior of austenitic and ferritic steels in supercritical water[J]. Nucl. Eng. Technol., 2008, 40: 147
[12] Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, 65R: 39
[13] Lai J K, Wickens A.Microstructural changes and variations in creep ductility of 3 casts of type 316 stainless steel[J]. Acta Metall., 1979, 27: 217
[14] Jiao Y N, Zheng W Y, Guzonas D, et al.Microstructure instability of candidate fuel cladding alloys: corrosion and stress corrosion cracking implications[J]. JOM, 2016, 68: 485
[15] Kaneko K, Fukunaga T, Yamada K, et al.Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel[J]. Scr. Mater., 2011, 65: 509
[16] Li T J, Liu F G, Fan C X, et al.Study on aging embrittlement of new type austenitic heat resistant steel HR3C used in USC boiler[J]. Hot Working Technol., 2010, 39(14): 43(李太江, 刘福广, 范长信等. 超超临界锅炉用新型奥氏体耐热钢HR3C的高温时效脆化研究[J]. 热加工工艺, 2010, 39(14): 43)
[17] Yang F, Zhang Y L, Ren Y N, et al.New Heat Resistant Steel Welding [M]. Beijing: China Electric Power Press, 2006(杨富, 章应霖, 任永宁等. 新型耐热钢焊接 [M]. 北京: 中国电力出版社, 2006)
[18] Iseda A, Okada H, Semba H, et al.Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Mater. Mater. Sci. Eng. Energy Syst., 2007, 2: 199
[19] Sun H Y, Sun Y D, Zhang R Q, et al.Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps[J]. Mater. Des., 2015, 67: 165
[20] Pardo A, Merino M C, Coy A E, et al.Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels[J]. Acta Mater., 2007, 55: 2239
[21] Sourmail T, Bhadeshia H K D H. Microstructural evolution in two variants of NF709 at 1023 and 1073 K[J]. Metall. Mater. Trans., 2005, 36A: 23
[22] Chen W Y, Li M M, Zhang X, et al.In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel[J]. J. Nucl. Mater., 2015, 464: 185
[23] Sun H Y, Sun Y D, Zhang R Q, et al.Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel[J]. Mater. Des., 2014, 64: 374
[24] Wen D H, Jiang B B, Wang Q, et al.Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures[J]. Mater. Des., 2017, 128: 34
[25] Fang Y Y, Zhao J, Li X N.Precipitates in HR3C steel aged at high temperature[J]. Acta Metall. Sin., 2010, 46: 844(方园园, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46: 844)
[26] Schwind M, K?llqvist J, Nilsson J O, et al.s-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater., 2000, 48: 2473
[27] Core?o-Alonso O, Duffus-Scott A, Zánchez-Cornejo C, et al.On the effect of σ-phase formation during metal dusting[J]. Mater. Chem. Phys., 2004, 84: 20
[28] Wang W F, Wu M J.Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J]. Mater. Sci. Eng., 2006, 425A: 167
[29] Sasikala G, Ray S K, Mannan S L.Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal[J]. Mater. Sci. Eng., 2003, 359A: 86
[30] Yamamoto Y, Brady M P, Lu Z P, et al.Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007, 316: 433
[31] Nikulin I, Kipelova A, Kaibyshev R.Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel[J]. Mater. Sci. Eng., 2012, 554A: 61
[32] Zucato I, Moreira M C, Machado I F, et al.Microstructural characterization and the effect of phase transformations on toughness of the UNS S31803 duplex stainless steel aged treated at 850℃[J]. Mat. Res., 2002, 5: 385
[33] Haro S, Ram??rez C, Mendoza E, et al. Microstructural analysis of heat-resistant welded pipes[J]. Mater. Charact., 2003, 51: 21
[34] Vach M, Kuníková T, Dománková M, et al.Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800℃[J]. Mater. Charact., 2008, 59: 1792
[35] Padilha A F, Escriba D M, Materna-Morris E, et al.Precipitation in AISI 316L(N) during creep tests at 550 and 600℃ up to 10 years[J]. J. Nucl. Mater., 2007, 362: 132
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!