Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 200-208    DOI: 10.11901/1005.3093.2017.605
Orginal Article Current Issue | Archive | Adv Search |
Effect of Solid Solution- and Mesothermal Phase Transition- Treatment on Microstructure and Mechanical Property of Ball Bearing Steel 8Cr4Mo4V
Kaili ZHAO1, Yongbao LIU1, Xingfu YU2, Chibin ZHOU2, Xinxin MA3
1 AECC, Harbin Bearing Co. Ltd. Harbin 150500, China;
2 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
3 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
Cite this article: 

Kaili ZHAO, Yongbao LIU, Xingfu YU, Chibin ZHOU, Xinxin MA. Effect of Solid Solution- and Mesothermal Phase Transition- Treatment on Microstructure and Mechanical Property of Ball Bearing Steel 8Cr4Mo4V. Chinese Journal of Materials Research, 2018, 32(3): 200-208.

Download:  HTML  PDF(8530KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ball bearing steel 8Cr4Mo4V was heat treated by a two step process,i.e. solid solution treatment at temperatures in the range of 1050~1100oC, and followed with a mesothermal phase transition treatment at 260℃. The microstructure and mechanical property such as hardness and impact toughness of the treated steel were characterized by means of optical microscope scanning electron microscopy and electron probe as well as harness tester and impact tester. Results show that after solution treatment at 1050℃ and 1065℃, certain amount of tinny dot-like carbides still remain in the steel, which hinders the growth of the grains of the steel. However, after solution treatment at 1095℃ and 1110℃, the tinny dot-like carbides all dissolve, thus the average grain size increases. It is noted that the solution treatment only facilitate the solution of the Cr- and V-containing crabide, but not the Mo-containing one. As a result of the high temperature solid solution treatment, the Cr- and V-content of the matrix increase to certain extent, which can reduce the diffusion coefficient of carbon in the matrix and the number of nucleus for bainite formation and the final amount of bainite phase, therewith leading to coarsening of bainite phase. With the increase of solid solution temperature, the hardness of the steel increases, while the impact toughness decreases.

Key words:  metallic materials      8Cr4Mo4V      bearing steel      bainitic transformation      mechanical property     
Received:  13 October 2017     
ZTFLH:  TG113  
Fund: Supported by National High Technology Research and Development Program of China (No. 2015AA034303), Heilongjiang Applied Technology Research and Development Plan (No. GX16A004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.605     OR     https://www.cjmr.org/EN/Y2018/V32/I3/200

Fig.1  Grain morphologies of steel after quenching at various solution temperatures (a) 1050℃, (b) 1065℃, (c) 1080℃, (d) 1095℃, (e) 1110℃
Fig.2  Relationship between average grain size and solution temperature
Fig.3  Bainite microstructure in 8Cr4Mo4V steel after solution tempering at various temperatures (a) 1050℃, (b) 1065℃, (c) 1080℃, (d) 1095℃, (e) 1110℃
Fig.4  Relationship between hardness of 8Cr4Mo4V steel and solution temperature
Fig.5  Relationship between impact toughness and solid solution temperature of 8Cr4Mo4V steel
Fig.6  Microstructure and element distribution of 8Cr4Mo4V steel after 1050℃ solid solution for 1 h (a) SEM, (b) C, (c) V, (d) Cr, (e) Mo, (f) Fe
Fig.7  Microstructure and element distribution of 8Cr4Mo4V steel after 1110℃ solid solution for 1 h (a) SEM, (b) C, (c) V, (d) Cr, (e) Mo, (f) Fe
Fig.8  Comparison of microstructure after austempering at 260℃ (a) and vacuum quenching (b)
Fig.9  Diagram of bainite growth process (a) solid solution at low temperature, (b) solid solution at high temperature
Fig.10  Bainite morphology at 260℃ isothermal treatment (a) solution at 1065℃, (b) solution at 1095℃
[1] Wu Y B, Fan Z Q, Ye J Y.Effect of cold treatment of steel Cr4Mo4V on dimension and contact fatigue life at high temperature[J]. Special Steel, 1999, 20(3): 17(吴运榜, 樊志强, 叶健熠. 冷处理对Cr4Mo4V钢尺寸和高温接触疲劳寿命的影响[J]. 特殊钢, 1999, 20(3), 17)
[2] Vincent L, Coquillet B, Guiraldenq P.Fatigue damage of ball bearing steel: Influence of phases dispersed in the martensitic matrix[J]. Metallurgical Transactions A ,1980, 11(6): 1001
[3] Gong J X, Lei J Z.Effect of heat treatment process on microstructures and fracture toughness of steel Cr4Mo4V[J]. Bearing, 2015, (9): 35(龚建勋, 雷建中. 热处理工艺对Cr4Mo4V钢显微组织及断裂韧性的影响[J]. 轴承, 2015, (9): 35)
[4] Lin J S.Technical advance in rolling bearing of aero-engine shaft[J]. Gas Turbine Experiment and Research, 2003, 16(4): 52(林基恕. 航空发动机主轴滚动轴承的技术进展[J]. 燃气涡轮试验与研究, 2003, 16( 4): 52)
[5] Liang X J, Anthony J, Deardo A.Study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate Steel[J]. Metallurgical and Materials Transactions A, 2014, 45: 5173
[6] Houillier R L, Begin G, Dube A.A study of the peculiarities of austenite during the formation of bainite[J]. Metallurgical Transactions, 1971, 2: 2645
[7] Zhang R Y, Boyd J D.Bainite transformation in deformed austenite[J]. Metallurgical and Materials Transactions A, 2010, 41: 1448
[8] Zhou M X, Xu G, Wang L, et al. Combined effect of the prior deformation and applied stress on the bainite transformation [J]. Metals and Materials International, 2016, 22, 6: 956
[9] Shi L, Yan Z S, Liu Y C.Development of ferrite/bainite bands and study of bainite transformation retardation in HSLA steel during continuous cooling[J]. Metals and Materials International, 2014, 20(1): 19
[10] Yada H.Discussion of a mechanism for the formation of lower bainite[J]. Metallurgical and Materials Transactions A, 1991, 22A: 1674
[11] Chang M, Yu H.Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon micro-alloyed steel[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(5): 427
[12] Zhu Y Z, Xu J P.A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel[J]. International Journal of Minerals Metallurgy and Materials, 2012, 19(9): 821
[13] Li W S, Gao H Y, Li Z Y.Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(3): 303
[14] Gensamer M, Pearsall E B, Pellini W S, et al.The tensile properties of pearlite, bainite, and spheroidite[J]. Metallography Microstructure & Analysis, 2012, 1(3-4): 171
[15] Zhou L N, Tang G Z, Ma X X.Effect of austenitizing temperature on microstructure of M50 steel[J]. Transaction of Materials and Heat Treatment, 2016, 37(7): 89(周丽娜, 唐光泽, 马欣新. 奥氏体化温度对M50钢组织转变的影响[J]. 材料热处理, 2016, 37(7): 89)
[16] Liu D J.China Aviation Material Handbook [M]. Beijing, Standards Press of China, 1988(刘德金, 中国航空材料手册[M]. 北京, 中国标准出版社, 1988)
[17] Zhang F C, Yang Z N, Lei J Z.Application progress of bainite steel in bearings[J]. Bearing, 2017, (1): 54(张福成, 杨志南, 雷建中. 贝氏体钢在轴承中的应用进展[J]. 轴承, 2017, (1): 54)
[18] Liang X, Deardo A J.A Study of the influence of thermomechanical controlled processing on the microstructure of bainite in high strength plate steel[J]. Metallurgical Transactions A, 2014, 45(11): 5173
[19] Caballero F G, Miller M K, Garcia-Mateo C.Atomic scale observations of bainite transformation in a high carbon high silicon steel[J]. Acta Materialia, 2007, 55(1): 381
[20] Aaronson H I.Decomposition of Austenite by Diffusional Processes[M]. Interscience, NewYork, NY, 1962
[21] Hillert M.Diffusion and interface control of reactions in alloys[J]. Metallurgical & Materials Transactions A, 1975, 6(1): 5
[22] Hillert M.Diffusion in growth of bainite[J]. Metallurgical & Materials Transactions A , 1994, 25(9): 1957
[23] Hu Z W, Xu G, Hu H J, In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel[J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(4): 371
[24] Pan J S, Gong J M, Tian M B.Foundation of Materials Science[M]. Beijing, Tsinghua University Press, 1998(潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京, 清华大学出版社, 1998)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!