Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 721-729    DOI: 10.11901/1005.3093.2017.597
ARTICLES Current Issue | Archive | Adv Search |
Application of Aminated Graphite Oxide for Waterborne Anti-corrosion and Fireproof Coatings
Na WANG(), Junsheng CHEN, Shuwei WANG, Jing ZHANG()
School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

Na WANG, Junsheng CHEN, Shuwei WANG, Jing ZHANG. Application of Aminated Graphite Oxide for Waterborne Anti-corrosion and Fireproof Coatings. Chinese Journal of Materials Research, 2018, 32(10): 721-729.

Download:  HTML  PDF(4902KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The graphene oxide (GO) was prepared by the Hummers method, and then modified with ethylenediamine to obtain aminated graphene oxide (NGO). The anti-corrosion and fire-proof waterborne epoxy composite coating was prepared by adding pentaerythritol phosphate (PEPA), aluminum triphosphate (ATP) and NGO to the waterborne epoxy resin, and then applied on the surface of steel sheet by air spraying method. The structure and morphology of GO and NGO were characterized by IR, XRD and SEM. The performance in anti-resistance and fire-proof resistance of the prepared coatings with different color ratios (pigment/resin ratio: P/B) was further investigated by means of electrochemical test, salt spray test, fire resistance test, residual carbon morphology analysis and thermogravimetric analysis. The results show that the composite coating with the P/B ratio of 0.2 presents the best comprehensive performance in anti-resistance and fire-proof.

Key words:  materials failure and protection      waterborne epoxy resin      chemical impedance spectroscopy      aminated graphene oxide      anti-corrosion and fire-retardant coating     
Received:  01 November 2017     
ZTFLH:  TB304  
Fund: Supported by BaiQianWan Talents Program of Liaoning Province (No. [2017]62), Finance Refers to Top Talents of Liaoning Province (No. [2016]864), and Science and Technology Program of Shenyang (No. 17-51-6-00)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.597     OR     https://www.cjmr.org/EN/Y2018/V32/I10/721

Fig.1  Schematic illustration of the reaction between GO and ethylenediamine
Sample No. EP/g Component/g Curing agent/g H2O/g
EP0 10 / 2.5 2.5
EP1 10 1.5 2.5 2.5
EP2 10 2.0 2.5 2.5
EP3 10 2.5 2.5 2.5
EP4 10 3.0 2.5 2.5
Table 1  Formulation of waterborne epoxy composite coatings
Fig.2  IR spectra of GO and NGO
Fig.3  XRD patterns of GO and NGO
Fig.4  SEM pictures of GO and NGO (a) GO; (b) NGO
Fig.5  Nyquist diagrams of coating
Fig.6  Time dependence of coating resistance
Fig.7  Mechanism of anti-corrosion (a) varnish coatings; (b) composite coating
  Fig.8 polarization curves for coatings
Sample ba bc Icoor/A·cm-2 Rp/Ω·cm 2 CR/mm·y-1 PEF/%
EP0 2.31×10-1 1.25×10-1 5.87×10-5 5.99×102 6.82×10-1 /
EP1 3.06×10-1 2.17×10-1 1.10×10-6 5.03×104 1.28×10-2 82.97
EP2 2.56×10-1 2.38×10-1 8.23×10-9 6.51×106 9.57×10-5 1.09×104
EP3 1.35×10-1 2.10×10-1 1.37×10-5 2.61×103 1.59×10-1 3.36
EP4 1.00×10-1 2.49×10-1 2.58×10-5 1.20×103 2.99×10-1 1.00
Table 2  Fitting data of polarization curves for coatings
Fig.9  Rust spots on the composite coating EP1, EP2, EP3 and EP4 samples (a) EP0; (b) EP1; (c) EP2; (d) EP3; (e) EP4
  
Fig.11  Surface of coatings after refractory experiment (a) EP0; (b) EP1; (c) EP2; (d) EP3; (e) EP4
Fig.12  SEM pictures of carbon residue of coatings (a) EP0; (b) EP2; (c) EP4
Fig.13  TG curves of samples
Sample No. T20/℃ T70/℃ W800/%
EP0 355.90 399.60 10.78
EP1 314.22 399.79 18.98
EP2 315.59 517.50 24.83
EP3 314.40 422.98 21.09
EP4 314.59 389.17 13.73
Table 3  TG data of composites coatings
[1] Wang D, Zhang H, Wang H J, et al.Preparation and performance study of a solvent free epoxy intumescent fire retardant coating for fire resistance to hydrocarbons[J]. Pain. Coat. Ind., 2010, 40(9): 41(王丹, 张晖, 王华进等. 户外耐烃类火灾无溶剂环氧膨账型防火涂料的制备及性能研究[J]. 涂料工业, 2010, 40(9): 41)
[2] Cui S W, Yin X Y, Yu Q L, et al.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J]. Corros. Sci., 2015, (98): 471
[3] Wang Z Y, Han E H, Ke W.Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J]. Corros. Sci., 2007, 49(5): 2237
[4] Wang W J, Yang J Y.Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure[J]. Surf. Coat. Tech., 2010, 204(8): 1186
[5] Noorden. R. V.Moving towards a graphene world[J]. Nature, 2006, 442(7100): 228
[6] Yu Z X, Di H H, Ma Y, et al.Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surf. Coat. Tech., 2015, (276): 471
[7] Liu X W, Wu W H, Qi Y X.Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin[J]. J. Therm. Anal. Calorim., 2016, 126(2): 553
[8] He Q Y, Herry Gunadi Sudibya, Yin Z Y, et al.Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications[J]. ACS Nano, 2010, 4(6): 3201
[9] Shen J F, Huang W S, Wu L P, et al.Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Compos. Part. A-Appl. S, 2007, 38(5): 1331
[10] Katsuyuki Wakabayashi, Cynthia Pierre, Dmitriy A.Dikin, et al, Thillaiyan Ramanathan, L. Catherine Brinson, John M. Torkelson. Polymer-graphitenanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules, 2008, 41(6): 1905
[11] Merlyn X. Pulikkathara, Oleksandr V. Kuznetsov, Valery N.Khabashesku. Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea[J]. Chem. Mater., 2008, 20(8): 2685
[12] Hu Y Z, Shen J F, Li N, et al.Amino-functionalization of graphene sheets and the fabrication of their nanocomposites[J]. Polym. Composite., 2010, 31(12): 1987
[13] Joel L. Stevens, Aaron Y.Huang, Peng H Q, et al. Sidewall aminofunctionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines[J]. Nano. Lett., 2003, 3(3): 331
[14] Shen J F, Huang W S, Wu L P, et al.Study on amino-functionalized multiwalled carbon nanotubes[J]. Mat. Sci. Eng. A-Struct, 2007, 464(1-2): 151
[15] Liao S H, Polan Liu, Minchien Hsiao, et al.One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite[J]. Ind. Eng. Chem. Res., 2012, 51(12): 4573
[16] Li Y F, Zhu J J, Gao X H, et al.Preparation of polyaniline microemulsion and anticorrosion performance of its composite coatings with versatatefluoro-acrylate emulsion[J]. Chin. J. Mater. Res., 2016, 30(2): 131(李玉峰, 祝晶晶, 高晓辉等. 聚苯胺微乳液的制备及与叔氟丙烯酸酯乳液复合涂层的防腐性能[J]. 材料研究学报, 2016, 30(2): 131)
[17] Wang N, Zhang Y N, Luan H H, et al.Preparation and anti-corrosion properties of waterborne epoxy coatings containing organic microspheres[J]. Chin. J. Mater. Res., 2017, 31(1): 1(王娜, 张义男, 栾鸿赫等. 有机微球填充水性环氧涂层的制备及其防腐性能[J]. 材料研究学报, 2017, 31(1): 1)
[18] Cai K W, Zuo S X, Luo S P, et al.Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings[J]. RSC. Adv., 2016, 6(98): 95965
[19] Chi-Hao Chang, Tsao-Cheng Huang, Chih-Wei Peng, et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14): 5044
[20] Tsao-Cheng Huang, Yu-An Su, Tzu-Chun Yeh, et al.Advanced anticorrosive coatings prepared from electroactive epoxy-SiO2 hybrid nanocomposite materials[J]. Electrochim. Acta., 2011, 56(17): 6142
[21] Tzu-Chun Yeh, Tsao-Cheng Huang, Hsiu-Ying Huang, et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyuria[J]. Polym. Chem., 2012, 3(8): 2209
[22] Tsao-Cheng Huang, Tzu-Chun Yeh, Hsiu-Ying Huang, et al.Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties[J]. Electrochim. Acta., 2011, 56(27): 10151
[23] Wang N, Zhang Y N, Chen J S, et al.Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings[J]. Prog. Org. Coat., 2017, 109: 126
[24] Zhang L, Huo D X, Liu D Z, et al.Antirust behavior of aluminum triphosphate in water-borne latex coating[J]. Corros. Sci. Prot. Techno., 2004, 16(5): 328(张丽, 霍东霞, 刘大壮等. 三聚磷酸铝在水性乳胶涂层中的防锈机理研究[J]. 腐蚀科学与防护技术, 2004, 16(5): 328)
[25] Shi Y Q, Qian X D, Zhou K Q,. CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene[J]. Ind. Eng. Chem. Res., 2013, 52(38): 13654
[26] Wang Zhou.The preparation and the characterization of epoxy/graphene oxide nanocomposites [D]. Beijing: Beijing University of Chemical Technology, 2010(王舟. 环氧树脂氧化石墨烯纳米复合材料的制备与表征[D]. 北京:北京化工大学, 2010)
[27] Jiang S D, Bai Z M, Tang G, et al.Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites[J]. Ind. Eng. Chem. Res., 2014, 53(16): 6708
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!