Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 759-766    DOI: 10.11901/1005.3093.2017.580
ARTICLES Current Issue | Archive | Adv Search |
Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles
Rimin CONG1(), Huaiqing YU1, Yunjun LUO2, Jiao LI1, Weiwei WANG1, Qiuhong LI1, Wuzhu SUN1, Weimeng SI1
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

Rimin CONG, Huaiqing YU, Yunjun LUO, Jiao LI, Weiwei WANG, Qiuhong LI, Wuzhu SUN, Weimeng SI. Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles. Chinese Journal of Materials Research, 2018, 32(10): 759-766.

Download:  HTML  PDF(3943KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Core-shell nanoparticles of Fe3O4/PAMAM/ZnO/TiO2 and Fe3O4/PAMAM/TiO2 were prepared by hydrothermal method with polyamidoamine (PAMAM) as template and isolation layer, while the construction mechanism and performance of which were investigated. The mophology, size, structure and proporties of these particles were characterized by HRTEM, EDS, XRD, SQUID and UV-Vis measurements. The results show that core-shell nanoparticles present clearly structure composed of magnetic core and shell, which were stacked with nanoparticles less than 5 nm in diameter, leading to high saturation magnetization and MB-adsorption rates. Althouth the interfacial contact area of core and shell was reduced by PAMAM isolation layer, trace electrons Fe2+ at the inerface could migrate into the TiO2 shell through the residual interfacial contact area, and then combine with the holes in shell, which brought the narrowing of shell band gap and the red-shifting of the absorption spectrum and thus the decreasing of catalytic activity. As for Fe3O4/PAMAM/ZnO/TiO2, the thicker PAMAM and ZnO layers cutted off the way of electrons migration to the TiO2 shell. The heterogeneous structure of ZnO/TiO2 facilitated the separation of the photogenerated electron hole pairs in shell. The new interface electronic states brought further red-shifting of the the absorption spectrum, higher utilization ratio of visible light, and therewith resulted in higher catalytic activity. The magnetic recovery and MB-degradation rate of Fe3O4/PAMAM/ZnO/TiO2 are 93.8% and 90.8% respectively after being recyced for 5 times.

Key words:  inorganic non-metallic materials      TiO2      ZnO      Fe3O4      core-shell      photocatalyst      magnetically recyclable     
Received:  09 October 2017     
ZTFLH:  O643  
Fund: Supported by Project of Shandong Province Higher Educational Science and Technology Program (No. J11LD12), Natural Science Foundation of Shandong Province (Nos. ZR2011BL006, ZR2010BM011 & ZR2015BM02), National Natural Science Foundation of China (No. 21706148), and Young Teachers Program of Shandong University of Technology

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.580     OR     https://www.cjmr.org/EN/Y2018/V32/I10/759

Fig.1  XRD spectrum of nanoparticles
Fig.2  HRTEM images of nanoparticles (a) Fe3O4, (b) Fe3O4/PAMAM/TiO2, (c)/(d) Fe3O4/PAMAM/ZnO/TiO2
Fig.3  Prepare process diagram of Fe3O4/PAMAM/ZnO/TiO2 core-shell nanoparticles
Fig.4  EDS spectrum of nanoparticles
Fig.5  UV-Vis absorption spectrum of nanoparticles (a), and the plots of (A)2 as a function of photon energy at the absorption edges (b)
Fig.6  Room temperature hysteresis loops of nanoparticles, the inset shows the enlarged view of coordinate origin
Fig.7  Adsorption and degradation curves of MB by nanoparticle photocatalysts
Fig.8  Schematic diagrams of the energy band structure of ZnO/TiO2 shell
Fig.9  Recovery rate and catalytic activity of reused nanoparticles
[1] Sun S, Chang X, Li X, et al.Synthesis of N-doped ZnO nanoparticles withimproved photocatalytical activity[J]. Ceram. Int. 2013, 39: 5197
[2] Siuzdak K, Szkoda M, Sawczak M, et al.Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity[J]. New J. Chem. 2015, 39: 2741
[3] Chen Y, Wang L, Wang W, Cao M.Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties[J]. Mater. Chem. Phys. 2017, 199: 416
[4] Gombac V, De-Rogatis L, Gasparotto A, et al.TiO2 nanopowders dopedwith boron and nitrogen for photocatalytic applications[J]. Chem. Phys. 2007, 339: 111
[5] Bumajdad A, Madkour M.Understanding the superior photocatalytic activityof noble metals modified titania under UV and visible light irradiation[J]. Phys.Chem. Chem. Phys. 2014, 16: 7146
[6] Zhang P, Shao C, Li X, et al.In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-waysynergistic heterostructure with enhanced photocatalytic activity[J]. J. Hazard.Mater. 2012, 237: 331
[7] Li L, Zhang X, Zhang W, et al.Microwave-assistedsynthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes[J]. Colloid Surf. A. 2014, 457: 134
[8] Zeng H, Liu P, Cai W, et al.Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J. Phys. Chem. C, 2008, 112: 19620
[9] Gao X P, Guo Z L, Zhou Y N, et al.Catalytic Performance and characterization of anatase TiO2 supported Pd catalysts for the selective hydrogenation of acetylene[J]. Acta Phys.-Chim. Sin. 2017, 33(3): 602(高晓平, 郭章龙, 周亚男, 敬方梨, 储伟. 锐钛矿型TiO2担载的Pd催化剂用于乙炔选择加氢的催化性能及其表征[J]. 物理化学学报, 2017, 33(3): 602)
[10] Volokh M, Diab M, Magen O, et al.Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials[J]. ACS Appl. Mater.Interfaces. 2014, 6: 13594
[11] Luo J, Ma L, He T, et al.TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties[J]. J. Phys.Chem. C 2012, 16: 11956
[12] Zhang C, Wu Z J, Liu J J, et al.Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation[J]. Acta Phys.-Chim. Sin. 2017, 33(7): 1492(张驰, 吴志娇, 刘建军等. MoS2/TiO2 复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492)
[13] Marschall R.Semiconductor composites: strategies for enhancing chargecarrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. 2014, 24: 2421
[14] Miller D R, Akbar S A, Morris P A.Nanoscale metal oxide-basedheterojunctions for gas sensing: a review[J]. Sensor. Actuator. B. 2014, 204: 250
[15] Chen Y, Wang L, Wang W, Cao M.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method[J]. Appl. Catal. B-Environ. 2017, 209: 110
[16] Xiao F X.Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Appl. Mater.Interfaces, 2012, 4: 7055
[17] Shaheen B S, Salem H G, El-Sayed M A, et al. Thermal/electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production[J]. J. Phys. Chem. C, 2013, 117: 18502
[18] Park J Y, Choi S W, Lee J W, et al.Synthesis and gas sensingproperties of TiO2-ZnO core-shell nanofibers[J]. J. Am. Ceram. Soc. 2009, 92: 2551
[19] Chang J, Kuga Y, Mora-Sero Y, et al.High reduction of interfacial charge recombination in colloidalquantum dot solar cells by metal oxide surface passivation[J]. Nanoscale, 2015, 7: 5446
[20] Shao D, Sun H, Xin G, et al.High quality ZnO-TiO2 core-shell nanowires for efficient ultraviolet sensing[J]. Appl. Surf. Sci. 2014, 314: 872
[21] Pan K, Dong Y, Zhou W, et al.Facilefabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting[J]. ACS Appl. Mater.Interfaces, 2013, 5: 8314
[22] Wang L, Liu S, Wang Z, et al.Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets viathermal stress[J]. ACS Nano. 2016, 10: 2636
[23] Kwiatkowski M, Bezverkhyy I, Skompska M.ZnO nanorods covered with aTiO2 layer: simple sol-gel preparation, and optical, photocatalytic andphotoelectrochemical properties[J]. J. Mater. Chem A. 2015, 3: 12748
[24] Watson S, Beydoun D, Amal R S.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core[J]. J Photoch Photobio A: Chem, 2002, 148: 303
[25] Gao Y, Chen B, Li H, et al.Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater Chem Phys, 2003, 80: 348
[26] Fu W, Yang H, Li M, et al.Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for nagnetic photocatalyst[J]. Mater. Lett. 2005, 59: 3530
[27] Fu W, Yang H, Chang L, et al.Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst[J]. Colloid Surfaces A, 2006, 289: 47
[28] Fu W, Yang H, Li M, et al.Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles[J]. Mater. Lett., 2006, 60: 2723
[29] Chung Y S, Park S B, Kang D W.Magnetically separable titania-coalted nickel ferrite photocatalyst[J]. Mater. Chem. Phy. 2004, 86: 375
[30] Ambashta R D, Sillanpaa M.Water purification using magnetic assistance: a review[J]. J. Hazard. Mater., 2010, 180: 38
[31] Abramson S, Srithammavanh L, Siaugue J-M, et al.Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particle[J]. J. Nanopart. Res. 2009, 11: 459
[32] Song X F, Gao L.Fabrication of bifunctional titania/silica-coated magnetic spheres and their photocatalytic activities[J]. J. Am. Ceram. Soc., 2007, 90: 4015
[33] Zhang Q, Meng G, Wu J, et al.Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure[J]. Opt. Mater. 2015, 46: 52
[34] Cong R M, Luo Y J, Yu H Q.Effect of polymer templates on the preparation and photocatalytic activity of CdS quantum dots[J]. Acta Chimica Sinica, 2010, 68: 1971(丛日敏, 罗运军, 于怀清. 高分子模板对CdS量子点制备及其光催化性能的影响[J]. 化学学报, 2010, 68(19): 1971)
[35] Stefan M, Pana O, Leostean C, et al.Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles[J]. J. Appl. Phy. 2014, 116: 114312
[36] Kwiatkowski M, Chassagnon R, Heintz O, et al.Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism[J]. Appl. Catal. B-Environ., 2017, 204: 200
[37] Ramirez-Ortega D, Melendez A M, Acevedo-Pena P, et al.Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity[J]. Electrochim. Acta, 2014, 140: 541
[38] Zheng X, Li D, Li X, et al.Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties[J]. Appl. Catal., B 2015, 168: 408
[39] Ramos P G, Flores E, Sanchez L A, et al.Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning[J]. Appl. Surf. Sci., 2017, 426: 844
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
No Suggested Reading articles found!