Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 775-781    DOI: 10.11901/1005.3093.2017.578
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder
Bo WU1, Xiaoyun ZHU1(), Mei CAO2, Jinming LONG3
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 School of Science, Kunming University of Science and Technology, Kunming 650093, China
3 Kunming Guixinkai Science and Technology Ltd, Kunming 650093, China
Cite this article: 

Bo WU, Xiaoyun ZHU, Mei CAO, Jinming LONG. Preparation and Properties of High Density and High Coverage Silver-coated Copper Powder. Chinese Journal of Materials Research, 2018, 32(10): 775-781.

Download:  HTML  PDF(3543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel Ag-coatings of high density and high coverage were prepared on Cu-powders via composite electroless plating. Then the phase composition, surface morphology, oxidation resistance and electrical conductivity of the Ag-coated Cu-powder were characterized by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM), high temperature oxidation test and digital ohmmeter respectively. The results show that when a proper amount of nano-Ag particulate was added to the plating electrolyte, the chemical deposition of Ag-coating of high density and high coverage can be facilitated on the surface of Cu-powder, besides,such nano-Ag particulate containing electrolyte presents better plating effect than that without adding nano-Ag particulate. Furthermore, the Ag-coated Cu- powder has good oxidation resistance and electrical conductivity.

Key words:  composite      silver-coated copper powder      composite electroless plating      high density      high coverage     
Received:  29 September 2017     
ZTFLH:  TG146  
Fund: Supported by Yunnan Province Science and Technology Innovation of Small and Medium-sized Enterprises Funded Projects (No. 2017EH016), Kunming University of Science and Technology Analysis and Testing Funds (No. 2016M20152230070)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.578     OR     https://www.cjmr.org/EN/Y2018/V32/I10/775

Fig.1  Preparation process and test flow chart of silver-coated copper powder
Fig.2  SEM images of silver-coated copper powder with different amounts of nano silver (a) 0 g/L, (b)1 g/L, (c) 2 g/L and (d) 3 g/L
Fig.3  Distribution of line scanning elements of silver-coated copper powder (a) Backscattered electron image of silver-coated copper powder cross section, (b) Element distribution image of the line scan
Fig.4  SEM images of silver-coated copper powder coating (a) No added nano silver, (b) Added nano silver
Fig.5  Physical growth model of silver-coated copper powder silver coating (a) No added nano silver, (b) Added nano silver
Fig.6  XRD patterns of silver-coated copper powder
Silver-coated copper powder R (111) R (200)
No added nano silver 0.61 0.76
Added nano silver 0.50 0.73
Table 1  Intensity ratio of characteristic peaks of silver-coated copper powder
Fig.7  Diagram of the deposition process of the coating
Fig.8  Diagram of the coating effect of the coating
Fig.9  SEM image of composite electroless silver-coated copper powder with different silver content (a) 10%, (b) 30% and (c) 50%
Silver-coated
copper powder
Oxidative weight
gain/%
No added nano silver 9.9
Added nano silver 8.4
Table 2  Oxidation resistance of silver-coated copper powder
Fig.10  Electrical conductivity of copper-coated copper powder
[1] Cao W, Li W, Yin R, et al.Controlled fabrication of Cu-Sn core-shell nanoparticles via displacement reaction[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2014, 453(8): 37
[2] Kim I, Kim Y, Woo K, et al.Synthesis of oxidation resistant core-shell copper nanoparticles[J]. RSC Advances, 2013, 3(35): 15169
[3] Miyakawa M, Hiyoshi N, Nishioka M, et al.Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using micro- wave assisted core particle formation coupled with galvanic metal displacement[J]. Nanoscale, 2014, 6(15): 8720
[4] Huang L, Luo L, Ding X, et al.Effects of simplified pretreatment process on the morphology of W-Cu composite powder prepared by electroless plating and its sintering characterization[J]. Powder Technol., 2014, 258: 216
[5] Kim X Y, Kim J, Choe J, et al.Fabrication of electrically conductive nickel-silver bimetallic particles via polydopa-mine coating[J]. Nanosci. Nanotechnol., 2013, 13(11): 7600
[6] Choe W G, Kim D Y, Park O O, et al.Morphology control and temporal growth of a continuous silver shell on core-shell spheres[J]. Crystengcomm, 2014, 16(23): 5142
[7] Song S, Mannari V.Light-colored compound conductive coatings based on CuI: Effect of volume fraction of CuI on morphology and electrical conductivity[J]. Prog. Org. Coat., 2010, 68(3): 208
[8] Jayaprakash N, Judith V J, John K L, et al.Antibacterial activity of silver nanoparticles synthesized from serine[J]. Mater. Sci. Eng., C, 2015, 49: 316
[9] Anna M R G, Claudia A, Mirko M, et al. Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications[J]. Appl. Surf. Sci., 2013, 280(8): 610
[10] Szymanska I B.Influence of the gas phase composition on the properties of bimetallic Ag/Cu nanomaterials obtained via chemical vapor deposition[J]. Polyhedron, 2013, 65(12): 82
[11] Zhang Y, Sun S, Zhang X, et al.Magnetic field controlled particle mediated growth inducing icker-like silver architectures[J]. Chem. Eng. J., 2014, 240(6): 494
[12] Chun W W, Shin M S, Choi B N, et al.Effect of heat treatment on the electrochmical properties of Mn oxide based powder prepared using a wet chemical process[J]. Sci. Adv. Mater., 2016, 8(1): 89
[13] Jung D S, Lee H M, Kang Y C, et al.Air-stable silver-coated copper particles of sub-micrometer size[J]. J. Colloid Interface Sci., 2011, 364(2): 574
[14] Zhu S, Yao J K, Remanufacturing process and technologies of electric brush-plating[J]. New Technol. New Process, 2009, 6: 1(朱胜, 姚巨坤. 电刷镀再制造工艺技术[J]. 新技术新工艺, 2009, 6: 1)
[15] Yuan Q L, Ling W D, Li P, et al.Effect of content of nano-ZrO2 on microstructure and micro-hardness of Ni-ZrO2 composite coatings prepared with electro-brush plating[J]. T. Mater. Heat Treat., 2013, 34(6): 142(袁庆龙, 凌文丹, 李平等. 纳米ZrO2含量对Ni/ZrO2刷镀层组织和硬度的影响[J]. 材料热处理学报, 2013, 34(6): 142)
[16] Yuan Q L, Ling W D, Li P, et al.Microstructure and properties of nicke1-base nano-Y2O3 composite coating prepared with electro-brush plating[J]. Rare Metal Mat. Eng., 2012, 41(A2): 603(袁庆龙, 凌文丹, 李平等. Ni/Y2O3纳米复合刷镀层组织及性能研究[J]. 稀有金属材料与工程, 2012, 41(A2): 603)
[17] Ying L X, Liu Y, Liu G J, et al.Preparation and properties of electroless Plating wear-resistant and antifriction composite coatings Ni-P-SiC-WS2[J]. Rare Metal Mat. Eng., 2015, 1: 28(应丽霞, 刘莹, 刘冠男等. 化学复合镀Ni-P-SiC-WS2耐磨减摩镀层的制备及性能研究[J]. 稀有金属材料与工程, 2015, 1: 28)
[18] Gui Y H, Dong F H, Niu L J, et al.Mechanism of Ni-P-SiC coating cBN abrasives by electroless composite plating[J]. J. Synth. Cryst., 2011, 40(4): 953(桂阳海, 东方红, 牛连杰等. 化学复合镀制备Ni-P-SiC包覆立方氮化硼的机理研究[J]. 人工晶体学报, 2011, 40(4): 953)
[19] Hou F, Xu H, Zeng B, et al.Study on the crystallization behavior of electroless Ni-P-SiO2 composite coatings[J]. Rare Metal Mat. Eng., 2012, 41(A2): 398(侯峰, 徐宏, 曾斌等. 化学镀Ni-P-SiO2复合镀层的晶化行为研究[J]. 稀有金属材料与工程, 2012, 41(A2): 398)
[20] Wang H X, Mao X Y, Shen T.Effect of nano-SiC particles on properties of Ni-SiC micro-composite coatings[J]. Chin. J. Nonferrous met., 2015, 25(6): 1560(王红星, 毛向阳, 沈彤. 纳米SiC颗粒对微米Ni-SiC复合镀层性能的影响[J]. 中国有色金属学报, 2015, 25(6): 1560)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!