Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 541-546    DOI: 10.11901/1005.3093.2017.542
ARTICLES Current Issue | Archive | Adv Search |
Effect of Pre-aging on Superplasticity of TB8 Ti-Alloy
Hongbo DONG(), Zhiyong JIANG, Shengwu ZHOU, Kun ZHANG, Hongxiao LIU
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

Hongbo DONG, Zhiyong JIANG, Shengwu ZHOU, Kun ZHANG, Hongxiao LIU. Effect of Pre-aging on Superplasticity of TB8 Ti-Alloy. Chinese Journal of Materials Research, 2018, 32(7): 541-546.

Download:  HTML  PDF(6965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pre-aging processes on superplasticity and microstructure of TB8 Ti-alloy was investigated. Results show that after pre-aging at 520oC for 1 h, the superplasticity of the alloy can be the best, and the elongation is up to 362%, increased by 1.65 fold of that for the counterpart alloy; A certain amount of fine α phase precipitated at grain boundaries and in grains of the metastable β-phase after pre-aging; During the deformation process, the precipitated α phase can restrain the growth of recrystallization grains and break the dissolution phase structure, so that induce grain refinement and increase the superplasticity of TB8 alloy. In case of pre-aging at a desired pre-aging temperature, the grain size of the fractured surface decreases first and then increases with the increasing aging time, while the grain size is the smallest and the elongation is the highest by pre-aging for 1 h. In case of pre-aging for a desired period of time, the alloy aged at 520oC presents the highest elongation at break with the most uniform fracture microstructure.

Key words:  metallic materials      TB8 titanium alloy      pre-aging      superplasticity      disperse precipitation      elongation     
Received:  12 September 2017     
ZTFLH:  TG146  
Fund: Supported by Aeronautical Science Foundation of China (No. 2015ZE56011) and Science Project of Jiangxi Province (No. 20151BBE50042)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.542     OR     https://www.cjmr.org/EN/Y2018/V32/I7/541

Fig.1  Dimension of tensile specimens (unit: mm)
Mo Nb Al Si C Fe O Ti
15.09 2.95 3.29 0.21 0.016 0.017 0.11 Bal.
Table 1  Chemical composition of TB8 alloy (mass fraction, %)
Fig.2  SEM images of TB8 alloy at different pre-aging system (a) no pre-aging; (b) 480℃/1 h; (c) 520℃/1 h; (d) 560℃/1 h; (e) 520℃/2 h; (f) 520℃/4 h
Fig.3  Photographs of samples after superplastic tensile test at a certain temperature (520℃), and different pre-aging times
Fig.4  Photographs of samples after superplastic tensile test at a certain pre-aging time (1 h), and different pre-aging temperatures
Fig.5  Microstructures of TB8 titanium alloy before and after superplastic tensile under different pre-aging temperatures (a) no pre-aging; (b) 520℃/1 h; (c) 560℃/1 h; (d) 840℃/10-3 s-1; (e) 520℃/1 h+840℃/10-3 s-1; (f) 560℃/1 h+840℃/10-3 s-1
Fig.6  The microstructures of TB8 titanium alloy before and after superplastic tensile under different pre-aging times (a) no pre-aging; (b) 520℃/1 h; (c) 520℃/4 h; (d) 840℃/10-3 s-1; (e) 520℃/1 h+840℃/10-3 s-1; (f) 520℃/4 h+840℃/10-3 s-1
[1] Chen Y W.β titanium alloy and its application in aerospace industry[J]. Rare Metal, 1996, 20(4): 29(陈玉文. β钛合金及其在宇航工业中的应用[J]. 稀有金属, 1996, 20(4): 297)
[2] Zhao Y Q, Xi Z P, Qu H L.Current situation of titanium alloy materials used for national aviation[J]. J. Aero. Mater ., 2003, 23(s1): 215(赵永庆, 奚正平, 曲恒磊. 我国航空用钛合金材料研究现状[J]. 航空材料学报, 2003, 23(s1): 215)
[3] Bania P J.Beta titanium alloys and their role in the titanium industry[J]. Journal of the Minerals Metals & Materials Society, 1994, 46(7): 16
[4] TAL G E, Eliezer D, Boellinghaus T.Investigation of hydrogen-deformation interactions in β-21S Titanium alloy using thermal desorption spectroscopy[J]. Journal of Alloys & Compounds, 2007, 440(s1-2): 204
[5] Yu D M.The application study of the new type titanium TB8[J]. Aerocraft Design, 2002, 26(2): 57(于冬梅. 新型钛合金TB8的应用研究[J]. 飞机设计, 2002, 26(2): 57)
[6] Zhang Z.Overview of β titanium alloy[J]. Rare Metal, 1995, 19(4): 296
[7] Wang M Z, Dong H B, Zhou Z B, et al.Superplastic tensile deformation behavior and constitutive equation of TB8 titanium alloy[J]. Special Casting & Nonferrous Alloys, 2016, 36(1): 103(王明主, 董洪波, 邹忠波等. TB8钛合金超塑性拉伸变形流变行为与本构方程[J]. 特种铸造及有色合金, 2016, 36(1): 103)
[8] Wang M Z.Study on the superplastic behavior and two stage superplastic of TB8 alloy [D]. Nanchang: Nanchang Hangkong University, 2016(王明主. TB8合金的超塑性行为及两段超塑性研究 [D]. 南昌: 南昌航空大学, 2016)
[9] Zeng L Y, Zhao Y Q, Li D K, et al.Research progress on superplastic titanium alloys[J]. Heat Treatment of Metal, 2005, 30(5): 28(曾立英, 赵永庆, 李丹柯等. 超塑性钛合金的研究进展[J]. 金属热处理, 2005, 30(5): 28)
[10] Li L, Sun J K, Men X J.Research progress and application of superplasticity of titanium alloys[J]. Development and Application of Materials, 2004, 19(6): 34(李梁, 孙建科, 孟祥军. 钛合金超塑性研究及应用现状[J]. 材料开发与应用, 2004, 19(6): 34)
[11] Xi B, Ju J H, Shu Y, et al.Influence factor on superplastic of titanium alloy[J]. Hot Working Technology, 2013, 42(10): 100(席兵, 巨建辉, 舒滢等. 钛合金超塑性的影响因素研究[J]. 热加工工艺, 2013, 42(10): 100)
[12] Yu H Q.Principle of Metal Plastic Forming [M]. Beijing: Mechanical Industry Press, 2005(俞汉清. 金属塑性成形原理 [M]. 北京: 机械工业出版社, 2005)
[13] Chen H Q, Lin H Z, Guo L, et al.Progress on hot deformation mechanisms and microstructure evolution of titanium alloys[J]. Journal of Materials Engineering, 2007, 0(1): 60(陈慧琴, 林好转, 郭灵等. 钛合金热变形机制及微观组织演变规律的研究进展[J]. 材料工程, 2007, 0(1): 60)
[14] Feng D, Zhang X M, Deng Y L, et al.Effect of pre-aging temperature and retrogression heating rate on microstructure and properties of 7055 aluminium alloy[J]. Chin. J. Nonferrous Met ., 2014, 24(5): 1141(冯迪, 张新明, 邓运来等. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014(5): 1141)
[15] Yuan Z S, Lu Z, Dai S L, et al.Effect of pre-aging on microstructure and properties of high-strength 2A97 Al-Cu-Li-X alloys[J]. Journal of Northeastern University:Natural Science, 2007, 28(1): 53(袁志山, 陆政, 戴圣龙等. 预时效对高强铝锂合金2A97组织和性能的影响[J]. 东北大学学报:自然科学版, 2007, 28(1): 53)
[16] Yang Y S, Fu J W, Luo T J, et al.Grain refinement of magnesium alloys under low-voltage pulsed magnetic field[J]. Chin. J. Nonferrous Met ., 2011, 21(10): 2639(杨院生, 付俊伟, 罗天骄等. 镁合金低压脉冲磁场晶粒细化[J]. 中国有色金属学报, 2011, 21(10): 2639)
[17] Wang K Y.GB/T 6394—2002, Introduction of metal average grain size measurement method[S]. Standardization and Quality of Machinery Industry, 2004, 12(5): 5
[18] Wang X N.Study on microstructure and properties of 6022 alloy for automobile body by pre-aging and microalloying [D]. Changsha: Central South University, 2010(王小宁. 预时效及微合金化对汽车车身用6022合金组织和性能的研究[D]. 长沙: 中南大学, 2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!