Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 209-215    DOI: 10.11901/1005.3093.2017.422
ARTICLES Current Issue | Archive | Adv Search |
Effect of Polypyrrole Modified Carbon Fiber on Interfacial Property of Composite PPy-carbon Fiber/epoxy
Wenyu WANG1, Yamin LIU1, Xin JIN1(), Changfa XIAO1, Zhengtao ZHU1,2, Tong LIN1,2
1 School of Materials Science and Engineering, State Key Laboratory of Membrane Separation and Membrane Processing, Tianjin University of Technology, Tianjin 300387, China
2 South Dakota Mining Institute, Rapid City SD57702, United States;
Cite this article: 

Wenyu WANG, Yamin LIU, Xin JIN, Changfa XIAO, Zhengtao ZHU, Tong LIN. Effect of Polypyrrole Modified Carbon Fiber on Interfacial Property of Composite PPy-carbon Fiber/epoxy. Chinese Journal of Materials Research, 2018, 32(3): 209-215.

Download:  HTML  PDF(2349KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the interfacial property of carbon fiber composites, the carbon fiber was pretreated by plasma technique and then coated with polypyrrole (PPy) by chemical oxidation polymerization of pyrrole. The surface modified carbon fiber and composite were characterized by SEM, AFM, XPS, FT-IR and IFSS. Results show that the interfacial shear strength of the modified single fiber increased by 259.3%, which may be ascribed to that the plasma pretreatment can increase the amount of polar groups on the surface of the carbon fiber, and facilitate the formation of hydrogen bonds between the carbon fiber and PPy, thus enhancing the interfacial property of the composite PPy-carbon fiber/epoxy.

Key words:  composite      polypyrrole      plasma      hydrogen bond      interface shear strength     
Received:  12 July 2017     
ZTFLH:  TB332  
Fund: Supported by National Natural Science Foundation of China (Nos. 51573136 & 51103101), Natural Science Foundation of Tianjin (Nos. 12JCYBJC17800 & 16JCTPJC45100), and the Science and Technology Plan of Tianjin (Nos. 15PTSYJC00230, 15PTSYJC00240 & 15PTSYJC00250)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.422     OR     https://www.cjmr.org/EN/Y2018/V32/I3/209

Fig.1  Interfacial shear strength (IFSS) of single fiber composites
Fig.2  SEM images of the fracture surface of carbon fiber composite (a) CF, (b) p-CF, (c) PPy-CF, (d) PPy-p-CF
Fig.3  SEM images of the morphologies of the carbon fiber (a) CF, (b) p-CF, (c) PPy-CF, (d) PPy-p-CF
Fig.4  AFM images of different CF surfaces (a) CF, (b) p-CF, (c) PPy-CF, (d) PPy-p-CF
Fig.5  Wide-scan XPS spectra (a) CF, (b) p-CF, (c) PPy-CF, (d) PPy-p-CF
Fig.6  C1s high-resolution XPS element spectra of CF (a), p-CF(b), PPy-CF (c) and PPy-p-CF (d)
Samples CF p-CF PPy-CF PPy-p-CF
C 94.65 65.90 77.90 78.04
O 4.66 21.94 6.99 6.16
N 0.21 3.43 9.68 12.98
O/C 4.90 32.3 9.00 8.00
C—C 86.05 37.46 44.40 42.80
COH 6.79 24.05 0.00 0.00
C=O 6.40 13.54 26.40 24.30
COOH 0.76 24.94 0.00 0.00
C—N 0.00 0.00 29.20 32.90
Table1  XPS surface element analysis of CF, p-CF, PPy-CF and PPy-p-CF (%, element or group fraction)
Fig.7  Infrared spectra of different samples (a) CF, (b) PPy-CF, (c) PPy-p-CF, (d) PPy
[1] Han S H, Oh H J, Kim S S.Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites[J]. Compos. Part B, 2014, 60: 98
[2] Sharma M, Gao S L, M?der E, et al.Carbon fiber surfaces and composite interphases[J]. Compos. Sci. Technol., 2014, 102: 35
[3] Luo H L, Xiong G Y, Ren K J, et al.Air DBD plasma treatment on three-dimensional braided carbon fiber-reinforced PEEK composites for enhancement of in vitro bioactivity[J]. Surf. Coat. Technol., 2014, 242: 1
[4] Jia X L, Zeng Z G, Li G, et al.Enhancement of ablative and interfacial bonding properties of EPDM composites by incorporating epoxy phenolic resin[J]. Compos. Part B, 2013, 54: 234
[5] Xu Z W, Chen L, Huang Y D, et al.Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy[J]. Eur. Polym. J., 2008, 44: 494
[6] Varelidis P C, McCullough R L, Papaspyrides C D. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Compos. Sci. Technol., 1999, 59: 1813
[7] Hughes J D H. The carbon fibre/epoxy interface—a review[J]. Compos. Sci. Technol., 1991, 41: 13
[8] Guo H, Huang Y D, Meng L H, et al.Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water[J]. Mater. Lett., 2009, 63: 1531
[9] Ezekiel H B, Sharp D, Villalba M M, et al.Laser anodised carbon fibre: coupled activation and patterning of sensor substrates[J]. J. Phys. Chem. Solids, 2008, 69: 2932
[10] Guo H, Huang Y D, Liu L, et al.Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites[J]. Mater. Des., 2010, 31: 1186
[11] Ho K K C, Beamson G, Shia G, et al. Surface and bulk properties of severely fluorinated carbon fibres[J]. J. Fluor. Chem., 2007, 128: 1359
[12] Harry I D, Saha B, Cumming I W.Surface properties of electrochemically oxidised viscose rayon based carbon fibres[J]. Carbon, 2007, 45: 766
[13] Montes-Morán M A, van Hattum F W J, Nunes J P, et al. A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites[J]. Carbon, 2005, 43: 1795
[14] Peng Q Y, He X D, Li Y B, et al.Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly (amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. J. Mater. Chem., 2012, 22: 5928
[15] He X D, Zhang F H, Wang R G, et al.Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers[J]. Carbon, 2007, 45: 2559
[16] Zhao F, Huang Y D.Grafting of polyhedral oligomeric silsesquioxanes on a carbon fiber surface: novel coupling agents for fiber/polymer matrix composites[J]. J. Mater. Chem., 2011, 21: 3695
[17] Meng L H, Fan D P, Zhang C H, et al.The effect of oxidation treatment with supercritical water/hydrogen peroxide system on intersurface performance for polyacrylonitrile-based carbon fibers[J]. Appl. Surf. Sci., 2013, 273: 167
[18] Park S J, Kim M H.Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites[J]. J. Mater. Sci., 2000, 35: 1901
[19] Qian X, Wang X F, Ouyang Q, et al.Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Appl. Surf. Sci., 2012, 259: 238
[20] Xie J F, Xin D W, Cao H Y, et al.Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J]. Surf. Coat. Technol., 2011, 206: 191
[21] Georgakilas V, Dallas P, Niarchos D, et al.Polypyrrole/MWNT nanocomposites synthesized through interfacial polymerization[J]. Synth. Met., 2009, 159: 632
[22] Bian L N, Xiao C F, Jin X.A study on structure and properties of PPy-UHMWPE fibers[J]. J. Text. Res., 2011, 32(3): 1(边丽娜, 肖长发, 金欣. PPy-UHMWPE纤维结构与性能的研究[J]. 纺织学报, 2011, 32(3): 1)
[23] Jin X, Wang W Y, Xiao C F, et al.Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating[J]. Compos. Sci. Technol., 2016, 128: 169
[24] Varelidis P C, McCullough R L, Papaspyrides C D. The Effect of temperature on the single-fiber fragmentation test with coated carbon fibers[J]. Compos. Sci. Technol., 1998, 58: 1487
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!