Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (8): 616-624    DOI: 10.11901/1005.3093.2017.331
ARTICLES Current Issue | Archive | Adv Search |
Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene
Ziqing LI, Wenxiu HE(), Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
Cite this article: 

Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene. Chinese Journal of Materials Research, 2018, 32(8): 616-624.

Download:  HTML  PDF(2822KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphite oxide (GO) was prepared via freeze-drying process of a modified Hummers method and then nitrogen-doped graphene was synthesized by one-step hydrothermal method with hydrazine hydrate, ethylenediamine, ammonia and urea as nitrogen sources and reductants respectively. The microstructure and morphology of the as-produced graphene were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope, X-ray photoelectron spectroscopy, synchronous thermogravimetric analyzer and nitrogen adsorption-desorption analyzer. The electrochemical performance of the prepared products was assessed by means of cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge technology. Results show that the four nitrogen-containing agents could effectively reduce GO to produce different graphenes, the corresponding nitrogen content (in mass fraction) of which is 4.99%, 7.7%, 6.35% and 9.18%, respectively. The doped-N atoms coupled into the graphene lattice in forms of "pyridinic N", "pyrrolic N" and "graphitic N". The specific capacitance of the nitrogen-doped graphene prepared with ethylenediamine and urea as reductants could reach 187.6 F·g-1 and 191.6 F·g-1 respectively, implying excellent electrochemical performance.

Key words:  inorganic non-metalic materials      nitrogen-doped graphene      hydrothermal method      electrochemical performance     
Received:  22 May 2017     
ZTFLH:  TQ127  
Fund: Supported by Natural Science Foundation of Inner Mongolia (No. 2015MS0208), Youth Science and Technology Talents Project of Inner Mongolia Education Department--the Youth Hi-Tech Talents A Class Program(No. NJYT-14-A08), Science and Technology Planning Programs of Baotou City of China (Nos. 2015C2004-1 & 2016-4)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.331     OR     https://www.cjmr.org/EN/Y2018/V32/I8/616

Fig.1  FT-IR spectra of Graphite, GO, RGO and NGX
Fig.2  XRD patterns of Graphite, GO, RGO and NGX
Fig.3  SEM images of GO, RGO and NGX (a) GO, (b) RGO, (c)-(f) NG1-NG4
Sample/mass fraction,% GO RGO NG1 NG2 NG3 NG4
C 64.97 72.07 82.81 77.50 77.73 74.22
O 35.03 27.93 12.20 15.80 17.28 16.60
N 0 0 4.99 7.70 6.35 9.18
Table 1  Quantitative analysis of EDS data of GO, RGO and NGX
Fig.4  TGA curves of Graphite, GO, RGO and NGX
Sample NG1 NG2 NG3 NG4
Pyridinic N/% 37.44 15.64 34.53 25.57
Pyrrolic N/% 33.89 43.36 28.80 39.68
Graphitic N/% 28.67 41.00 36.67 34.75
Table 2  Quantitative analysis of N1s XPS data of NGX
Fig.5  XPS survey scan spectra of GO,RGO and NGX (a), XPS C1s spectra of GO (b) and high resolution XPS N1s spectra of NGX (c-f)
Fig.6  N2 adsorption-desorption isotherms of NGX (a) NG1, (b) NG2, (c) NG3, (d) NG4
Sample C GO RGO NG1 NG2 NG3 NG4
σ / Sm-1 4.32×104 <10-3 220.1 263.8 388.4 312.6 427.1
Table 3  Electrical conductivity (σ) of GO, RGO and NGX
Fig.7  CV curves of NGX at 10 mV s-1 scan rates (a) and AC impedance spectroscopy of RGO and NGX (b)
Fig.8  Galvanostatic charge-discharge curves of NG4 at different current densities (a) and cycle life curve of NGX and RGO at the same current density (b)
[1] Ahmad S, Guillen E, Kavan L, et al.Metal free sensitizer and catalyst for dye sensitized solar cells[J]. Energ. Environ. Sci., 2013, 6(12): 3439
[2] Lin Y, Jin J, Kusmartsevab O, et al.Preparation of pristine graphene sheets and large-area/ultrathin graphene films for high conducting and transparent applications[J]. J. Phys. Chem. C, 2013, 117(33): 17237
[3] Wu X L, Jiang L L, Long C L, et al.Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors[J]. Adv. Funct. Mater., 2015, 25(11): 1648
[4] Konatham D, Striolo A.Molecular design of stable graphene nanosheets dispersions[J]. Nano. Lett., 2008, 8(12): 4630
[5] Greil P.Perspectives of nano-carbon based engineering materials[J]. Adv. Eng. Mater., 2015, 17(2): 124
[6] Bonaccorso F, Colombo L, Yu G H, et al.Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347: 6217
[7] Zhang L, Wu H B, Yan Y, et al.Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energ. Environ. Sci., 2014, 7(10): 3302
[8] Okada Y, Serbyn M, Lin H, et al.Observation of dirac node formation and mass acquisition in a topological crystalline insulator[J]. Science, 2013, 341(6153): 1496
[9] Singh A K, Andleeb S, Singh J, et al.Ultraviolet-light-induced reversible and stable carrier modulation in MoS2 field-effect transistors[J]. Adv. Funct. Mater., 2014, 24(45): 7125
[10] Fazio G, Ferrighi L, Di Valentin C.Boron-doped graphene as active electrocatalyst for oxygenreduction reaction at a fuel-cell cathode[J]. J. C., 2014, 318: 203
[11] Bangert U, Zan R.Electronic functionalisation of graphene via external doping and dosing[J]. Int. Mater. Rev., 2015, 60(3): 133
[12] Amirfakhri S J, Pascone P A, Meunier J L, et al.Fe-N-doped graphene as a superior catalyst for H2O2 reduction reaction in neutral solution[J]. J. Catal., 2015, 323: 55
[13] Hou Y, Wen Z H, Cui S M, et al.An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting[J]. Adv. Funct. Mater., 2015, 25(6): 872
[14] Singh K P, Bae E J, Yu J S.Fe-P: A new class of electroactive catalyst for oxygen reduction reaction[J]. J.Am.Chem.Soc, 2015, 137(9): 3165
[15] Liu Y X, Ma Y L, Jin Y, et al.Microwave-assisted solvothermal synthesis of sulfur-doped graphene for electrochemical sensing[J]. J Electroanal Chem., 2015, 739: 172
[16] Liu Y Q, Wei D C, Di Z N et al. Method for preparing graphene by chemical vapor deposition method [P].Chinese Patent No. 00810113596, 2008(刘云圻, 魏大程, 狄重安等. 化学气相沉积法制备石墨烯的方法 [P].中国专利00810113596, 2008)
[17] Wang G X, Shen X P, Wang B, et al.Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets[J]. Carbon, 2009, 47(5): 1359
[18] OuYang F P, Huang B, Li Z Y, et al. Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects[J]. J. Phys. Chem. C, 2008, 112(31): 12003
[19] Sundaram R S, Gomez N C, Balasubramanian K, et al.Electrochemical modification of graphene[J]. Adv. Mater., 2008, 20(16): 3050
[20] Usachov D, Vilkov O, Gruneis A, et al.Nitrogen-doped graphene: efficient growth, structure, and electronic properties[J]. Nano Lett., 2011, 11(12): 5401
[21] Miao Q H, Wang L D, Liu Z Y, et al.Magnetic properties of N-doped graphene with high Curie temperature[J]. Scientific Reports. 2016, 6: 21832
[22] Bianco G V, Losurdo M, Giangregorio M M, et al.Exploring and rationalising effective n-doping of large area CVD-graphene by NH3[J]. P. C. C. P., 2014, 16(8): 3632
[23] Su P, Guo H L, Peng S, et al.Preparation of nitrogen-doped graphene and its supercapacitive properties[J]. Phys. Chem. Mater, 2012, 28(11): 2745(苏鹏, 郭慧林, 彭三等. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11): 2745)
[24] Sheng Z H, Shao L, Chen J J, et al.Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350
[25] Jin Z, Yao J, Kittrell C.Growth of bilayer graphene on insulating substrates[J]. ACS Nano, 2011, 5(10): 8241
[26] Reddy A L M, Srivastava A, Gowda S R, et al. Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study [J]. ACS Nano, 2010, 4, (6337): 625
[27] Qian W, Cui X, Hao R, et al.Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction[J]. ACS Appl. Mater. Interfaces, 2011, 3(7): 2259
[28] Kovtyukhova N I, Ollivier P J, Martin B R, et al.Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater., 1999, 11(3): 771
[29] Zhao L, Fan L, Zhou M, et al.Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[M]. Adv. Mater., 2010, 22: 5202
[30] Wang K, Ji B C, Han M J, et al.Preparation of nitrogen-doped graphene with solid microwave method[J]. Chinese J. Inorg. Chem., 2013, 29(10): 2105)(王凯, 季炳成, 韩美佳 等. 微波固相法快速制备氮掺杂石墨烯[J]. 无机化学学报, 2013, 29(10): 2105)
[1] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[2] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[3] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[4] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[6] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[7] WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials[J]. 材料研究学报, 2020, 34(4): 277-284.
[8] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[9] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
[10] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
[11] Qingmin WEI,Xiuying LI,Shihua XU,Guocong LIU,Guobao HUANG,Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors[J]. 材料研究学报, 2019, 33(5): 394-400.
[12] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
[13] Rongzhen GAO, Xiaodong LI, Wenfeng LIU, Yanhong YIN, Shuting YANG. Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. 材料研究学报, 2018, 32(9): 713-720.
[14] Wenshen YANG,Lin LANG,Xiuli YIN,Chuangzhi WU. Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking[J]. 材料研究学报, 2017, 31(6): 401-409.
[15] Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. 材料研究学报, 2017, 31(5): 321-328.
No Suggested Reading articles found!