Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 191-199    DOI: 10.11901/1005.3093.2017.270
ARTICLES Current Issue | Archive | Adv Search |
Wettability and Tribological Performance of Texture Surface in Oil and Water
Mingming MA, Feng LIAN(), Kang JIANG, Huichen ZHANG
College of Transporation Equipments and Ocean Engineering, Dalian Maritime University, Dalian 116026, China;
Cite this article: 

Mingming MA, Feng LIAN, Kang JIANG, Huichen ZHANG. Wettability and Tribological Performance of Texture Surface in Oil and Water. Chinese Journal of Materials Research, 2018, 32(3): 191-199.

Download:  HTML  PDF(6211KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to study the effect of the form of surface texture on the wettability and tribological performance of materials in oil and water, a theoretical model of hydrodynamic lubrication of textured surface is established to calculate the carrying capacity of the hydrodynamic lubricating film for material with surface texture composed of prism- and cone frustum- like concaves. The calculated results indicate that the carrying capacity of the hydrodynamic lubricating film of the surface with cone frustum-like concaves is 2.4 times larger than that with prism-like ones in case of the area ratio of concaves is 19.6%. According to the above theoretical mode, surface texture composed of prism- and cone frustum-like concaves respectively was established on 5083 Al-alloy via laser processing and then was surface modified with sol-gel SiO2 coating of low-surface energy. The test result shows that the contact angle of the surface with prism-like concaves is 2°~4° bigger than that with cone frustum-like ones. While with two surface textures plus amphiphobic coating, the tribological performance the 5083 Al-alloy can be significantly enhanced. Besides, the tribological performance of the 5083 Al-alloy with surface texture of cone frustum-like concaves is better than that of prism ones, which is consistent with the calculation results. Finally, the effect of the shape of concaves on the tribological performance is greater than that on the wettability.

Key words:  surface and interface in the materials      tribological performance      texture      lubricating film carrying capacity      wettability      lubricant     
Received:  20 April 2017     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (Nos.5127506 & 50975036), Fundamental Research Funds for the Central Universities (No.3132016354) and Industrial Research Program of Liaoning Province (No.2012220006)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.270     OR     https://www.cjmr.org/EN/Y2018/V32/I3/191

Fig.1  Schematic diagrams of friction pair and texture cell: (a) prism, (b) cone frustum
Fig.2  Dimensionless lubricating film pressure distributions in oil: (a) prism, (b) cone frustum
Fig.3  3D topographies of surface textures (a) prism and (b) cone frustum
Fig.4  Cross-section topographies of dimples:
(a) prism, (b) cone frustum
Droplet Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle Contact angle Rolling angle
Water 71.8 <5 <5 / 158.0 / 154.8 / 163.3 2.1 160.7 2.5
Sea-water 65.3 <5 <5 / 146.1 / 144.2 / 155.8 3.5 153.8 4.4
Oil 53.3 <5 <5 / 118.2 / 114.6 / 128.7 / 125.2 /
Table 1  Contact angle and rolling angle of specimens (°)
Fig.5  Friction coefficients of the surfaces with the texture of prism (a, c, e) and cone frustum (b, d, f) in water (a, b), sea water (c, d) and oil (e, f)
Lubricants Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Water 0.714 0.677 0.616 0.639 0.587 0.576 0.496
Sea-water 0.687 0.634 0.578 0.596 0.550 0.517 0.448
Oil 0.190 0.168 0.139 0.146 0.125 0.124 0.097
Table 2  Average friction coefficients of specimens
Fig.6  Grinding crack pictures of SiO2 coated specimens with the textures of prism (a, c, e) and cone frustum (b, d, f) in water, sea-water and oil, respectively
Lubricants Polishing Blank texture Low energy With SiO2
Prism Cone frustum Prism Cone frustum Prism Cone frustum
Water 2.510 2.437 2.357 2.306 2.113 2.161 1.983
Sea-water 2.696 2.577 2.395 2.324 2.204 2.281 2.012
Oil 0.355 0.261 0.228 0.233 0.206 0.217 0.182
Table 3  Wear losses of the specimens (×108 μm3)
Fig.7  Wear debris and corresponding EDS results of blank specimen in water (a), sea water (b) and oil (c)
Fig.8  Grinding crack morphologies of blank texture specimen in water (a), sea water (b) and oil (c)
[1] Hamilton D B, Walowit J A, Allen C M.A theory of lubrication by microirregularities[J]. J. Basic. Eng., 1966, 88(1): 177
[2] Tonder K.Hydroddynamic effects of tailored inlet roughnesses: extended theory[J]. Tribo. Int., 2004, 37(2): 137
[3] Wen S Z.Study on lubrication theory progress and thinking over[J]. Tribology, 2007, 27(6): 497(温诗铸. 润滑理论研究的进展与思考[J]. 摩擦学学报, 2007, 27(6): 497)
[4] Shen C, Khonsari M M.Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J]. Tribo. Int., 2015, 82: 1
[5] Wang X L, Kato K, Koshi A, et al.Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribo. Int., 2003, 36(3): 189
[6] Ma C B, Zhu H.An optimum design model for textured surface with elliptical-shape dimples under hydrodynamic lubrication[J]. Tri. Int., 2011, 44: 987
[7] Sun X D, Liu G, Li L Y, et al.Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chin. J. Mater. Res., 2015, 29(7): 523(孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(7): 523)
[8] Li P P, Chen X H, Yang G B, et al.Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil[J]. Appl. Surf. Sci., 2014, 300: 184
[9] Wang H Y, Yan L D, Gao D J, et al.Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1-2): 62
[10] Yan C P, Wang L, Wang Q D, et al.Tribological properties of bronze with different surface wettability[J]. Tribology, 2014, 34(3): 297(严诚平, 王莉, 王权岱等. 不同润湿性锡青铜表面摩擦特性实验研究[J]. 摩擦学学报, 2014, 34(3): 297)
[11] Kim S J, Jang S K, Han M S, et al.Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship[J]. Trans. Nonferrous Met. Soc. China, 2013, 23(3): 636
[12] Zhou T, Huang B Y, Zhou K C, et al.Research on crossion-resistance of rapidly solidified aluminum alloys[J]. Rare. Metal. Mat. Eng., 2004, 33(2): 187(周涛, 黄伯云, 周科朝等. 快速凝固耐热铝合金耐蚀性能的研究[J]. 稀有金属材料与工程, 2004, 33(2): 187)
[13] Wang S S, Yang L, Huang Y H, et al.Environments of 6061 Al alloy anodized in boron-sulfuric acid solution[J]. Chin. J. Mater. Res., 2017, 31(1): 49(王莎莎, 杨浪, 黄云华等. 硼硫酸阳极氧化6061铝合金在不同大气环境中的初期腐蚀行为研究[J]. 材料研究学报, 2017, 31(1): 49)
[14] Soleimani R, Mahboubi F, Kazemi M, et al.Corrosion and tribological behavior of electroless Ni-P/nano-SiC composite coating on aluminum 6061[J]. Surf. Eng., 2015, 31(9): 714
[15] Trauth D, Klocke F, Terhorst M, et al.Computational fluid dynamics analysis of a machine hammer peened surface structure for lubricated sliding contacts[J]. J. Tribo., 2015, 138(2): 021704
[16] Yu H, Deng H, Huang W, et al.The effect of dimple shapes on friction of parallel surface[J]. J. Eng. Tribo., 2011, 225(J8): 693
[17] Lin Y Z, Wang T L.Experimental study on resistance power to the seawater corrosion of carbon fiber reinforced concrete beams[J]. J. Shandong Uni. Sc. Technol.(Nat. Sci.), 2008, 27(2): 44(林跃忠, 王铁林. 碳纤维增强混凝土梁正截面抗海水侵蚀能力实验研究[J]. 山东科技大学学报(自然科学报), 2008, 27(2): 44)
[18] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28(8): 988
[19] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday. Soc., 1944, 40: 546
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[7] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[8] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[10] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[12] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[13] YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 81-89.
[14] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[15] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
No Suggested Reading articles found!