Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 481-488    DOI: 10.11901/1005.3093.2017.159
ARTICLES Current Issue | Archive | Adv Search |
Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels
Caihong YING1,2, Lijia CHEN1(), Tianlong LIU1, Lianquan GUO2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Science, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Caihong YING, Lijia CHEN, Tianlong LIU, Lianquan GUO. Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels. Chinese Journal of Materials Research, 2017, 31(7): 481-488.

Download:  HTML  PDF(7095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cyclic creep tests at 650°C for both 11.5CrNbTi and 15Cr0.5MoNbTi ultra pure ferritic stainless steels were conducted under the stress-controlled mode , the effect of hold time introduced at the maximum applied stress on the deformation and fracture behaviors of the ferritic stainless steels was investigated. The results show that with prolonging the hold time, the minimum cyclic creep rate increases, and the cyclic creep life and the cycle number to fracture decrease for both stainless steels. Under the same conditions, the cyclic creep resistance of the 15Cr0.5MoNbTi stainless steel is higher than that of the 11.5CrNbTi stainless steel. The cyclic creep fracture mode for two stainless steels is transgranular fracture. With prolonging the hold time, the quantity of creep voids increases and the effect of creep damage gets enhanced. The microstructures after the cyclic creep are composed of sub-grains. The deformation mechanism of cyclic creep is mainly the dislocation slip and cross slip.

Key words:  metallic materials      ultra pure ferritic stainless steel      cyclic creep      hold time      fracture mode      deformation mechanism     
Received:  02 March 2017     
ZTFLH:  TG142  
Fund: Supported by National Natural Science Foundation of China (No. 51134010)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.159     OR     https://www.cjmr.org/EN/Y2017/V31/I7/481

Steel Cr Mo Nb Ti C N Ni Mn Si Fe
11.5CrNbTi 11.5 0.19 0.16 ≤0.030 ≤0.020 ≤0.3 ≤1.0 ≤1.0 Bal.
15Cr0.5MoNbTi 15 0.5 0.45 0.3 ≤0.030 ≤0.020 ≤0.3 ≤1.2 ≤1.2 Bal.
Table 1  Chemical composition of the ferritic stainless steel(mass fraction, %)
Fig.1  Geometry of cyclic creep specimen (unit: mm)
Fig.2  Stress cycling waveform adopted in cyclic creep test
Fig.3  Cyclic creep curves of 11.5CrNbTi and 15Cr0.5MoNbTi stainless steels at maximum applied stress of 60 MPa (a-c), 70 MPa (d-f) and 80 MPa (g-i) with hold time of 10 min (a, d, g), 30 min (b, e, h) and 60 min (c, f, i)
Material σmax/ MPa th/min ε˙min/×10-4h-1 tf/h Nf/cycle
11.5CrNbTi 60 10 3.57 253.0 1508
30 3.72 171.9 343
60 4.19 131.2 131
70 10 7.49 71.6 427
30 8.71 65.7 131
60 9.00 54.1 54
80 10 10.67 45.0 269
30 10.73 37.1 74
60 11.90 29.1 29
15Cr0.5MoNbTi 60 10 0.57 429.8 2562
30 1.14 378.1 756
60 1.82 252.5 252
70 10 1.98 201.6 1209
30 2.56 149.3 298
60 3.68 102.1 102
80 10 3.16 84.2 502
30 5.21 65.1 130
60 6.89 43.0 43
Table 2  Results of cyclic creep tests for 11.5CrNbTi and 15Cr0.5MoNbTi stainless steels
Fig.4  Schematic precipitation pinning and dislocation bowing under inelastic mechanism
Fig.5  Crack propagation region of 11.5CrNbTi (a, b, c) and 15Cr0.5MoNbTi (d, e, f) stainless steel after cyclic creep at maximum applied stress of 60 MPa with hold time of 10 min (a, d), 30 min (b, e) and 60 min (c, f)
Fig.6  Crack propagation region of 11.5CrNbTi (a, b, c) and 15Cr0.5MoNbTi (d, e, f) stainless steel after cyclic creep at maximum applied stress of 80 MPa with hold time of 10 min (a, d), 30 min (b, e) and 60 min (c, f)
Fig.7  Microstructures of 11.5CrNbTi stainless steel before cyclic creep (a) and after cyclic creep at maximum applied stress of 80 MPa with hold time of 10 min (b), 30 min (c) and 60 min (d)
Fig.8  Microstructures of 11.5CrNbTi stainless steel after cyclic creep at maximum applied stress of 60 MPa and 70 MPa: (a) 60 MPa, 10 min hold time; (b) 70 MPa, 60 min hold time
Fig.9  Microstructures of 15Cr0.5MoNbTi stainless steel before cyclic creep (a) and after cyclic creep at maximum applied stress of 80 MPa with hold time of 10 min (b), 30 min (c) and 60 min (d)
Fig.10  Microstructures of 15Cr0.5MoNbTi stainless steel after cyclic creep at maximum applied stress of 60 MPa and 70 MPa: (a) 60 MPa, 10 min hold time; (b) 70 MPa, 60 min hold time
[1] Li X, Liu H L, Bi H Y, et al.Oxidation behavior of 18CrNb ferritic stainless steel at elevated temperatures[J]. Chin. J. Mater. Res., 2016, 30(4): 263李鑫, 刘后龙, 毕洪运等. 中铬铁素体不锈钢18CrNb高温氧化行为[J]. 材料研究学报,2016,30(4): 263)
[2] Ma L, Han J, Shen J Q, et al.Effects of microalloying and heat-treatment temperature on the toughness of 26Cr-3.5Mo super ferritic stainless steels[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 407
[3] Qiang S M, Jiang L Z, Li J, et al.Evaluation of intergranular corrosion susceptibility of 11Cr ferritic stainless steel by DL-EPR method[J]. Acta Metall. Sin., 2015, 51(11): 1349(强少明, 江来珠, 李劲等. 双环电化学动电位再活化法评价11Cr铁素体不锈钢晶间腐蚀敏感性[J]. 金属学报, 2015,51(11): 1349)
[4] Liu T L, Chen L J, Bi H Y, et al.Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27(3): 452
[5] Li H B, Jiang Z H, Feng H, et al.Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system[J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(9): 850
[6] Dong Z G, Chen H T, Lang Y P, et al.Effect of Ti and Nb on high temperature mechanical property of ferritic stainless steel used for hot end of automotive exhaust system[J]. Iron and Steel, 2013, 48(2): 64董志刚, 陈海涛, 郎宇平等. 铌、钛对汽车排气系统热端用铁素体不锈钢高温力学性能的影响[J]. 钢铁,2013,48(2): 64)
[7] Tie Z M.Mechanical properties of Ni-Ti ferritic stainless steel after high temperature aging[J]. Foundry Technology,2015, 36(1): 74铁争鸣. 汽车排气管用Nb-Ti铁素体不锈钢在高温时效过程中的力学性能变化 [J].铸造技术, 2015, 36(1): 74)
[8] Wang S L, Shen B L, Gao S J, et al.Influence of heat treatment on high temperature cyclic creep behavior of mullite short fiber reinforced ZL107 alloy[J]. Acta Metall. Sin., 2000, 36(5): 550王珊玲, 沈保罗, 高升吉等. 热处理对莫来石短纤维增强ZL107合金高温循环蠕变行为的影响[J]. 金属学报, 2000, 36(5): 550)
[9] Zhao P, Xuan F Z.Ratchetting behavior of advanced 9-12% chromium ferrite steel under creep-fatigue loadings[J]. Mech. Mater., 2011, 43: 299
[10] Zhu S J, Yang Z A, Wang Z G.Cyclic creep deformation and fracture of a Cr-Mo rotor steel at elevated temperatures[J]. Chin. J. Mat. Sci. Technol., 1992, 8: 255
[11] Kim W G, Park J Y, Ekaputra I M W, et al. Cyclic creep behaviour under tension-tension loading cycles with hold time of modified 9Cr-1Mo steel[J]. Mater. High Temp., 2014, 31(3): 249
[12] Kang G Z, Zhang J, Sun Y F, et al.Uniaxial time-dependent ratcheting of SS304 stainless steel at high temperatures[J]. J. Iron Steel Res. Int., 2007, 14(1): 53
[13] Morris D G, Harries D R.The cyclic creep behaviour of Type 316 stainless steel[J]. J. Mater. Sci., 1978, 13: 985
[14] Paul S K, Sivaprasad S, Dhar S, et al.True stress-controlled ratcheting behavior of 304LN stainless steel[J]. J. Mater. Sci., 2012, 47: 4660
[15] Sarkar A, Nagesha A, Parameswaran P, et al.Transition in failure mechanism under cyclic creep in 316LN austenitic stainless steel[J]. Metall. Mater. Trans. A, 2014, 45: 2931
[16] Sarkar A, Nagesha A, Sandhya R, et al.Effect of mean stress and stress amplitude on the ratcheting behaviour of 316LN stainless steel under dynamic strain aging regime[J]. Mater. High Temp., 2012, 29(4): 351
[17] Kang G Z, Dong Y W, Wang H, et al.Dislocation evolution in 316L stainless steel subjected to uniaxial ratcheting deformation[J]. Mater. Sci. Eng., A, 2010, 527: 5952
[18] Gaudin C, Feaugas X.Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses[J]. Acta Mater., 2004, 52: 3097
[19] Shu J, Bi H Y, Li X, et al.The effects of molybdenum addition on high temperature oxidation behavior at 1,000℃ of type 444 ferritic stainless steel[J].Oxid. Met., 2012, 78: 253
[20] Fan Z C, Chen X D, Chen L, et al.Fatigue creep interaction behavior of 1.25Cr0.5Mo steels and analysis free from creep invalidation[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(12): 2021范志超, 陈学东, 陈凌等. 1.25Cr0.5Mo钢疲劳蠕变及免于蠕变失效分析[J]. 浙江大学学报(工学版), 2006, 40(12): 2021)
[21] Kang G Z, Dong Y W, Liu Y J, et al.Uniaxial ratchetting of 20 carbon steel: macroscopic and microscopic experimental observations[J]. Mater. Sci. Eng., A, 2011, 528: 5610
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!