Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 341-347    DOI: 10.11901/1005.3093.2017.107
ARTICLES Current Issue | Archive | Adv Search |
Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene
Panpan LIU1,2, Hanchao LI2, Lin YANG1, Ting GUO2, Peiling KE2, Aiying WANG2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

Panpan LIU, Hanchao LI, Lin YANG, Ting GUO, Peiling KE, Aiying WANG. Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene. Chinese Journal of Materials Research, 2018, 32(5): 341-347.

Download:  HTML  PDF(3023KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the transformation behavior of tetrahedral amorphous carbon (ta-C) into graphene, a three-layered structure material of metal catalyst Ni/ tetrahedral amorphous carbon (ta-C)/Si-substrate was prepared via a two-step process, namely ta-C film was firstly deposited on Si-substrate with a home-made filtered cathodic vacuum arc system, then on which (111) preferential oriented Ni-film was further deposited by electron beam evaporation method. Afterwards the as prepared three-layered structure material was treated via a controlled rapid thermal annealing method in order to transform (ta-C) into graphene. Meanwhile,the effect of annealing temperature on the graphene growth was focused. Results show that both the deposited films of ta-C and Ni all present smooth and uniform surface morphology, which provide the premise for growing high-quality graphene. Furthermore, the annealing temperature plays great role on the crystallization of amorphous carbon into graphene. When the annealing temperature was above 400°C, the multilayered graphene could form on Ni surface, and the better quality of graphene was obtained through annealing at 500°C for 15 min.

Key words:  inorganic non-metallic materials      multilayer graphene      rapid thermal annealing      Ni catalyze      tetrahedral amorphous carbon     
Received:  24 January 2017     
Fund: Supported by Program of National Natural Science Foundation of China (No. 51522106), National Natural Science Foundation of China (No. 51371187), State Key Project of Fundamental Research of China (No. 2013CB632302), Public Projects of Zhejiang Province (No. 2016C31121)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.107     OR     https://www.cjmr.org/EN/Y2018/V32/I5/341

Fig.1  Schematic of graphene growth process in amorphous carbon system
Fig.2  Deconvolved spectra of XPS C 1s core lever peaks of deposited ta-C film
Fig.3  Raman spectra of deposited ta-C film
Fig.4  AFM surface morphologies of deposited ta-C film (a) and ta-C/Ni film (b)
Fig.5  SEM surface images of samples annealed at 200℃ (a), 300℃ (b), 400℃ (c), 500℃ (d), 600℃ (e) and 900℃ (f)
Fig.6  XRD spectra of samples annealed at 200~600℃, compared with deposited sample in room temperature
Fig.7  Raman spectra (a) of samples annealed at 200~600℃, and ID/IG, IG/I2D (b) of samples annealed at 400~600℃
Fig.8  Cross-sectional HRTEM image annealed at 500℃ for 15 min (inset shows the interlayer spacing of graphene film)
[1] Novoselov K S, Jiang D, Schedin F, et al.Two dimensional atomic crystals[J]. Proc. Natl. Acad. Sci. USA., 2005, 102(30): 10451
[2] Geim A K, Novoselov K S.The rise of graphene[J]. Nature Mater., 2007, 6:183
[3] Novoselov K S, Jiang D, Schedin T J, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[4] Bolotin K I, Sikes K J, Jiang Z, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun., 2008, 146(9): 351
[5] Zhang Y B, Tan Y W, Stormer H L, et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201
[6] Sasaki K, Jiang J, Saito R, et al.Theory of superconductivity of carbon nanotubes and graphene[J]. J. Phys. Soc. Jpn., 2007, 76(3): 033702
[7] Balandin A A, Ghosh S, Bao W Z, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett., 2008, 8(3): 902
[8] Lee C, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385
[9] Nair R R, Blake P, Grigorenko A N, et al.Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308
[10] Lin H L, Shen Y J, Wang Z J, et al.Preparation and Performance of Polypropylene Nanocomposites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer[J]. Chin. J. Mater. Res., 2016, 30(5): 393(蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究[J]. 材料研究学报, 2016, 30(5): 393)
[11] Heer W A D, Berger C, Wu X S, et al. Epitaxial graphene[J]. Solid State Commun., 2007, 143: 92
[12] Gao W, Alemany L B, Ci L J, et al.New insights into the structure and reduction of graphite oxide[J]. Nature Chem., 2009, 1(8): 403
[13] Wintterlin J, Bocquet M L.Graphene on metal surfaces[J]. Surf. Sci., 2009, 603(10): 1841
[14] Ren W C, Gao L B, Ma L P, et al.Preparation of graphene by chemical vapor deposition[J]. New Carbon Mater., 2011, 26(1): 71(任文才, 高力波, 马来鹏等. 石墨烯的化学气相沉积法制备[J]. 新型碳材料, 2011, 26(1): 71)
[15] Zhang W, Zhang S, Liu L Q, et al.Tribological properties and application of a-C diamond-like carbon films[J]. Journal of Academy of Armored Force Engineering, 2006, 20(4): 83(张伟, 张纾, 柳清亮等. 非晶碳类金刚石薄膜摩擦学特性及其应用[J]. 装甲兵工程学院学报, 2006, 20(4): 83)
[16] Dai W, Wu G S, Sun L L, et al.Effect of substrate bias on microstructure and properties of diamond-like carbon films by linear ion beam system[J]. Chin. J. Mater. Res., 2009, 23(6): 598(代伟, 吴国松, 孙丽丽等. 衬底负偏压对线性离子束DLC膜微结构和物性的影响[J]. 材料研究学报, 2009, 23(6): 598)
[17] Roy R K, Lee K R.Biomedical applications of diamond-like carbon coatings: a review[J]. J. Biomed. Mater. Res. B., 2007, 83: 72
[18] Dwivedi N, Kumar S, Malik H K, et al.Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films[J]. Appl. Surf. Sci., 2011, 257: 6804
[19] Rodr?guez-Manzo J A, Pham-Huu C, Banhart F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon[J]. ACS Nano. 2011, 5(2): 15292
[20] Banno K, Mizuno M, Fujita K, et al.Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films[J]. Appl. Phys. Lett., 2013, 103(8): 082112
[21] Zheng M W, Takei K, Hsia B, et al.Metal-catalyzed crystallization of amorphous carbon to graphene[J]. Appl. Phys. Lett., 2010, 96(6): 063110
[22] Xu S P, Li X W, Huang M D, et al.Stress reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films[J]. Appl. Phys. Lett., 2014, 104(14): 141908
[23] Bourgoin D, Turgeon S, Ross G G.Characterization of hydrogenated amorphous carbon films producedby plasma-enhanced chemical vapour deposition with various chemical hybridizations[J]. Thin Solid Films, 1999, 357: 246
[24] Gradowski M V, Ferrari A C, Ohr R, et al.Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices[J]. Surf. Coat. Technol., 2003, 174: 246
[25] Ferrari A C, Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B, 2000, 61(20): 14095
[26] Ferrari A C, Robertson J.Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Phys. Rev. B, 2001, 64(7): 075414
[27] Song X L, Song L X, Zhang T.Effect of nickel film on growth of graphene by chemical vapor method[J]. J. Chin. Ceram. Soc., 2015, 43(12): 1795(宋香莲, 宋力昕, 张涛. 镍薄膜对化学气相沉积法生长石墨烯的影响[J]. 硅酸盐学报, 2015, 43(12): 1795)
[28] Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53(3): 1126
[29] Ferrari A C, Meyer J C, Scardaci V, et al.Raman Spectrum of Graphene and Graphene Layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401
[30] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al.Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
[31] Can?ado L G, Takai K, Enoki T.General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Appl. Phys. Lett., 2006, 88(16): 163106
[32] Li X S, Cai W W, An J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312
[33] Wenisch R, Hübner R, Munnik F, et al.Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition[J]. Carbon, 2016, 100: 656
[34] Giovannetti G, Khomyakov P A, Brocks G, et al.Doping graphene with metal contacts[J]. Phys. Rev. Lett., 2008, 101(2): 026803
[35] Saadi S, Abild-Pedersen F, Helveg S, et al.On the role of metal step-edges in graphene growth[J]. J. Phys. Chem. C, 2010, 114(25): 11221
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!