Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 931-938    DOI: 10.11901/1005.3093.2016.739
Current Issue | Archive | Adv Search |
Influence of Boron, Single-layer Graphene and Multi-layer Graphene on Hydrogen Storage Property of Mg-Al Alloy
Xiantun HUANG(), Peilin QING, Weihe SHI
Department of Materials Science and Engineering, Baise College, Baise 533000, China
Cite this article: 

Xiantun HUANG, Peilin QING, Weihe SHI. Influence of Boron, Single-layer Graphene and Multi-layer Graphene on Hydrogen Storage Property of Mg-Al Alloy. Chinese Journal of Materials Research, 2017, 31(12): 931-938.

Download:  HTML  PDF(2843KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Al alloy was prepared via mechanical alloying under hydrogen atmosphere protection, and then the influence of doping substance such as: boron (B), single-layer graphene (SG) and multi-layer graphene (MG) (in 5%, mass fraction) respectively on the hydrogen storage property of Mg-Al alloy was investigated systematically. The results show that the prepared alloy is mainly composed of Mg17Al12, while the hydrogen storage performance for the Mg-Al alloy is improved obviously by doping graphene SG and MG respectively. The initial desorption temperature for Mg-Al-5 (SG and MG) alloy is 64 K and 82 K lower than that of the plain Mg-Al alloy (575 K), and correspondingly their dehydrogenation peak temperature was 76 K and 74 K lower. Besides, with the incorporation of SG and MG, the apparent activation energy of the Mg-Al alloy decreases from 328.9 kJ/mol to 231.5 kJ/mol and 289.4 kJ/mol respectively.

Key words:  metallic materials      Mg-Al alloy      mechanical alloying      carbon materials      hydrogen storage property     
Received:  20 December 2016     
ZTFLH:  TG139  
Fund: Supported by Natural Science Foundation of Guangxi Province (No. 2014GXNSFAA118346) and Guangxi Colleges and Universities Key Subject of Material Physics and Chemistry (Baise College) (No. KS16ZD06)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.739     OR     https://www.cjmr.org/EN/Y2017/V31/I12/931

Fig.1  SEM images of Mg-Al-x(x=0, B, SG, MG) alloys samples after milling 50 h
Fig.2  XRD patterns of Mg-Al-x(x=0, B, SG, MG) composites (a) as-milled;(b) hydrogenation; (c) dehydrogenation
Fig.3  The rate curves of samples with the increasing temperature of 2 K/min (a) hydrogenation; (b) dehydrogenation
Fig.4  Hydrogen and dehydrogen absorption kinetics for Mg-Al-x(x=0, B, SG, MG) composites at 573 K
Fig.5  Hydrogen absorption curves of the Mg-Al-MG composite at 523 K, 573 K and 623 K
Fig.6  Plots ln[-ln(1-α)] vs lnt for hydrogen absorption of the Mg-Al-MG alloy composite
Fig.7  Hydrogen absorption plots of (1000/RT) vs lnkof the Mg-Al-MG alloy composite
Fig.8  DTA curves for Mg-Al-x(x=0, B, SG, MG) composites
Fig.9  Kissinger plot for Mg-Al-x(x=0, B, SG, MG) composites
[1] Choi Y J, Lu J, Sohn H Y, et al.Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling[J] . J. Power Sources, 2008, 180: 491
[2] Luo X L, Grant D M, Walker G S.Catalytic effect of nano-sized ScH2 on the hydrogen storage of mechanically milled MgH2[J]. J. Alloy. Compd., 2015, 622: 842
[3] Wan Q, Li P, Shan J W, et al.Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2[J]. J. Phys. Chem., 2015, 119C: 2925
[4] Mushnikov N V, Ermakov A E, Uimin M A, et al.Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen[J]. Phys. Met. Metallogr., 2006, 102: 421
[5] Imamura H, Masanari K, Kusuhara M, et al.High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling[J]. J. Alloy. Compd., 2005, 386: 211
[6] Wu C Z, Wang P, Yao X, et al.Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling[J]. J. Alloy. Compd., 2006, 420: 278
[7] Huang Z G, Guo Z P, Calka A, et al.Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium[J]. J. Alloy. Compd., 2007, 427: 94
[8] Tanniru M, Slattery D K, Ebrahimi F.A study of phase transformations during the development of pressure-composition-isotherms for electrodeposited Mg-Al alloys[J]. Int. J. Hydrogen Energ., 2011, 36: 639
[9] Zhong H C, Wang H, Ouyang L Z.Improving the hydrogen storage properties of MgH2 by reversibly forming Mg-Al solid solution alloys[J]. Int. J. Hydrogen Energ., 2014, 39: 3320
[10] Lee S L, Hsu C W, Hsu F K, et al.Effects of Ni addition on hydrogen storage properties of Mg17Al12 alloy[J]. Mater. Chem. Phy.,2011, 126: 319
[11] Crivello J C, Nobuki T, Kato S, et al. Hydrogen absorption properties of the γ-Mg17Al12 phase and its Al-richer domain [J]. J. Alloy. Compd., 2007, 446-447: 157
[12] Peng W Q, Lan Z Q, Wei W L, et al.Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy[J]. Int. J. Hydrogen Energ., 2016, 41: 1759
[13] Imamura H, Tabata S, Takesue Y, et al.Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon[J]. Int. J. Hydrogen Energ., 2000, 25: 837
[14] Liu G, Wang Y J, Xu C C, et al.Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride[J]. Nanoscale, 2013, 5: 1074
[15] Novoselov K S, Fal’ko V I, Colombo L, et al.A roadmap for graphene[J]. Nature, 2012, 490: 192
[16] Allen M J, Tung V C, Kaner R B.Honeycomb carbon: A review of graphene[J]. Chem. Rev., 2010, 110: 132
[17] Tao S X, Kalisvaart W P, Danaie M, et al.First principle study of hydrogen diffusion in equilibrium rutile, rutile with deformation twins and fluorite polymorph of Mg hydride[J]. Int. J. Hydrogen Energ., 2011, 36: 11802
[18] Liang G, Huot J, Boily S, et al.Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite[J]. J. Alloy. Compd., 1999, 291: 295
[19] Tan X H, Harrower C T, Amirkhiz B S, et al.Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films[J]. Int. J. Hydrogen Energ., 2009, 34: 7741
[20] Yao X D, Wu C Z, Du A J, et al.Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage[J]. J. Phys. Chem., 2006, 110B: 11697
[21] Yao X D, Lu G Q.Magnesium-based materials for hydrogen storage: Recent advances and future perspectives[J]. Chinese Sci. Bull., 2008, 53: 2421
[22] Muthukumar P, Satheesh A, Linder M, et al.Studies on hydriding kinetics of some La-based metal hydride alloys[J]. Int. J. Hydrogen Energ., 2009, 34: 7253
[23] Fernández J F, Sánchez C R.Rate determining step in the absorption and desorption of hydrogen by magnesium[J]. J. Alloy. Compd., 2002, 340: 189
[24] Norberg N S, Arthur T S, Fredrick S J, et al.Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. J. Am. Chem. Soc., 2011, 133: 10679
[25] Wang Y Q, Lu S X, Zhou Z Y, et al.Effect of transition metal on the hydrogen storage properties of Mg-Al alloy[J]. Mater Sci., 2017, 52: 2392
[26] Kissinger H E.Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!