Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 445-450    DOI: 10.11901/1005.3093.2016.541
Orginal Article Current Issue | Archive | Adv Search |
Effect of Inorganic Soil Stabilizer on Properties of Raw Soil Material
Mingyu HU(),Chao FU,Lili WEI,Jiang ZHENG
School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031,China
Cite this article: 

Mingyu HU,Chao FU,Lili WEI,Jiang ZHENG. Effect of Inorganic Soil Stabilizer on Properties of Raw Soil Material. Chinese Journal of Materials Research, 2017, 31(6): 445-450.

Download:  HTML  PDF(1600KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of inorganic soil stabilizer, as soil modifier, on the compression strength, water resistance, freeze-thaw resistance of the raw soil materials was assessed, whilst the prepared materials were characterized by means of scanning electron microscope and X-ray diffractometer. The results show that the compressive strength, softening coefficient and freeze-thaw resistance (BDR) are 8.78 MPa, 0.85 and 38.38% respectively for the raw soil material with addition of 20%~25% inorganic soil stabilizer after maintenance for 60 days, which indicates that the material has an excellent performance. The inorganic soil stabilizer reacts with SiO2 and Al2O3 in the soil to generate new products such as Ca1.7MgO3SiO4, 2CaOAl2O3SiO2 and Na2CaSiO4, in the meanwhile, α-C2S and γ-C2S within the modified admixture may react with water to produce C-S-H gel, which are the main causes responsible to the enhancement of the performance of the raw soil material.

Key words:  inorganic non-metallic material      raw soil material      inorganic soil stabilizer      compressive strength      softening coefficient      frost resistance     
Received:  13 September 2016     
Fund: Supported by National Natural Science Foundation of China (No.51362021) Science and Technology Project of the Water Resources Department of Jiangxi Province (No.KT201331)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.541     OR     https://www.cjmr.org/EN/Y2017/V31/I6/445

Particle size/mm 20 10 5 2 1 0.5 0.25 0.075
Percentage of total soil mass less than this aperture/% 93.19 78.10 67.62 53.36 49.72 32.31 13.78 1.51
Table 1  Particle size distribution of raw soil
No. Inorganic soil stabilizer content /% Raw soil content/% Water-solid ratio
S-0-100 0 100 0.15
S-10-90 10 90 0.15
S-15-85 15 85 0.16
S-20-80 20 80 0.17
S-25-75 25 75 0.18
Table 2  Mix proportions of experiment
Fig.1  Relation between age and compressive strength
Fig.2  Relation between age and water saturated compressive strength
Fig.3  Relation between age and softening coefficient
Fig.4  Relations between inorganic soil stabilizer content and freeze-thaw cycles
Fig.5  Relations between inorganic soil stabilizer content and compressive strength
Fig.6  Relations between inorganic soil stabilizer content and loss rate
Fig.7  X-ray diffraction diagram of raw soil material with different inorganic soil stabilizer content
Fig.8  Scanning electron micrographs of raw soil material (a) and raw soil material with 25% inorganic soil stabilizer content (b)
[1] Wang Q.Study on modification of raw soil material [D]. Chongqing: Chongqing University, 2009
[1] (王琴. 生土材料的改性研究 [D]. 重庆, 重庆大学, 2009)
[2] Tian X F, Zhang D J, Hou H B, et al.Microstructure of weak soil stabilization slag cementing material[J]. J. Chin. Ceramic Soc., 2006, 34: 636
[2] (田晓峰, 张大捷, 侯浩波等. 矿渣胶凝材料稳定软土的微观结构[J]. 硅酸盐学报, 2006, 34: 636)
[3] Liu Q B, Xiang W, Zhang W F, et al.Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock Soil Mechan., 2009, 30: 2286
[3] (刘清秉, 项伟, 张伟锋等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30: 2286)
[4] Zha F S, Liu S Y, Du Y J.Experiment on improvement of expansive clays with lime-fly ash[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2007, 37: 339
[4] (查甫生, 刘松玉, 杜延军. 石灰-粉煤灰改良膨胀土试验[J]. 东南大学学报(自然科学版), 2007, 37: 339)
[5] Liu J, Shi B, Jiang H T, et al.Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Eng. Geol., 2011, 117: 114
[6] Jayasinghe C, Kamaladasa N.Compressive strength characteristics of cement stabilized rammed earth walls[J]. Construct. Build. Mater., 2007, 21: 1971
[7] Xu H, Zhang D Q, Zhang X F.Research on stabilized soil strength testing of Chang-Yu freeway[J]. J. Jilin Univ.(Earth Sci. Ed.), 2002, 32: 69
[7] (许晖, 张冬青, 张喜发. 长余高速公路稳定土强度试验研究[J]. 吉林大学学报(地球科学版), 2002, 32: 69)
[8] Lv Q F, Li X Y, Zhao Y X, et al.Properties of modified loess under freeze-thaw cycles[J]. J. Central South Univ.(Sci. Technol.), 2014, 45: 819
[8] (吕擎峰, 李晓媛, 赵彦旭等. 改性黄土的冻融特性[J]. 中南大学学报(自然科学版), 2014, 45: 819)
[9] Liu J, Chu J Y, Zhao J B, et al.Effect of admixures on mechanical properties of raw clay material for wall[J]. J. Build. Mater., 2010, 13: 446
[9] (刘军, 褚俊英, 赵金波等. 掺和料对生土墙体材料力学性能的影响[J]. 建筑材料学报, 2010, 13: 446)
[10] Qian J S, Wang Q, Jia X W, et al.Research on preparation of adobe materials with desulfurized wastes from coal-fired power plant[J]. New Build. Mater., 2009, 36(2): 28
[10] (钱觉时, 王琴, 贾兴文等. 燃煤电厂脱硫废弃物用于改性生土材料的研究[J]. 新型建筑材料, 2009, 36(2): 28)
[11] Xiao H S.On the strength of modified soil-lime[J]. J. Hunan Univ.(Nat. Sci.), 1988, 15(3): 85
[11] (肖鹤松. 改性灰土强度的研究[J]. 湖南大学学报(自然科学版), 1988, 15(3): 85)
[12] Liu Z H, Li Y F, Yang J J, et al.Experimental research on properties of raw soil modified by geopolymeric cement[J]. Bullet. Chin. Ceramic Soc., 2016, 35: 73
[12] (刘志华, 李园枫, 杨久俊等. 基于土聚水泥生土材料改性试验研究[J]. 硅酸盐通报, 2016, 35: 73)
[13] Ahmed A, Ugai K.Environmental effects on durability of soil stabilized with recycled gypsum[J]. Cold Regions Sci. Technol., 2011, 66: 84
[14] Degirmenci N.The using of waste phosphogypsum and natural gypsum in adobe stabilization[J]. Construct. Build. Mater., 2008, 22: 1220
[15] Zhang T J, Hong Z S, Deng D S, et al.Predication method of unconfined compression strength for cemented silty soils[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2008, 38: 839
[15] (张铁军, 洪振舜, 邓东升等. 水泥固化粉质土的无侧限抗压强度预测[J]. 东南大学学报(自然科学版), 2008, 38: 839)
[16] Liu J X, Zhang L, Yang J J.International advances in raw soil materials[J]. Mater. Rev., 2012, 26(23): 14
[16] (刘俊霞, 张磊, 杨久俊. 生土材料国内外研究进展[J]. 材料导报, 2012, 26(23): 14)
[17] Wang Y.Experimental research on raw-soil material modification in south shaanxi[J]. Build. Sci., 2011, 27(11): 49
[17] (王赟. 陕南生土材料改性试验研究[J]. 建筑科学, 2011, 27(11): 49)
[18] Fan H H, Gao J E, Wu P T.Prospect of researches on soil stabilizer[J]. J. Northwest Sci-Tech Univ. Agric. For.(Nat. Sci. Ed.), 2006, 34(2): 141
[18] (樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141)
[19] Li Q, Sun K W, Xu B, et al.Progress and application on curing mechanism of soil stabilizer[J]. Mater. Rev., 2011, 25(9): 64
[19] (李琴, 孙可伟, 徐彬等. 土壤固化剂固化机理研究进展及应用[J]. 材料导报, 2011, 25(9): 64)
[20] Prabakar J, Sridhar R S.Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construct. Build. Mater., 2002, 16: 123
[21] Hai R, Liu J X, Zhang M L, et al.The structure and properties of stabilized earth materials modified by plant fiber[J]. J. Build. Mater., 2015, 10: 1
[21] (海然, 刘俊霞, 张茂亮等. 植物纤维增强生土材料结构与性能研究[J]. 建筑材料学报, 2015, 10: 1)
[22] Liu J X.The research on the physical and mechanical properties of degradable clay based cementitois materials [D]. Zhengzhou: Zhengzhou University, 2013
[22] (刘俊霞. 黄河泥沙基可降解生土材料结构与性能研究 [D]. 郑州: 郑州大学, 2013)
[23] Lubica Kriskova, Yiannis Pontikes, et al.Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cement and Concrete Research, 2014, 55: 59
[24] Wang Q Q, Li F, Shen X D, et al.Relation between reactivity and electronic structure for α'L-, ?- and γ- dicalcium silicate: A first-principles study[J]. Cement and Concrete Research, 2014, 57: 28
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!