Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 437-444    DOI: 10.11901/1005.3093.2016.533
Orginal Article Current Issue | Archive | Adv Search |
Effects of Different Heavy Metals on Fly Ash-based Geopolymer
Xiaolu GUO1,2(),Liang WU2,Huisheng SHI1,2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

Xiaolu GUO,Liang WU,Huisheng SHI. Effects of Different Heavy Metals on Fly Ash-based Geopolymer. Chinese Journal of Materials Research, 2017, 31(6): 437-444.

Download:  HTML  PDF(4326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fly ash based geopolymer were prepared with fly ash as raw material and several compounds of heavy metals as additives. Then the effect of the type, content and chemical form of the heavy metal on the compressive strength, reaction products, and pore structure of the prepared geopolymers was investigated. The results show that the incorporation of Pb2+、Cr3+ and Cu2+ has great effect on the late compressive strength and results in formation of reinhardbraunsite in the solidified body. Moreover, the Pb2+ reduces the total pore volume of the solidified body, while Cr3+ and Cu2+ increase it. The content of the heavy metal compounds should be controlled within a reasonable range. When the content of the heavy metal compounds is relatively small, the total pore volume is small and the solidified body is much compact. Besides, the different chemical forms of chromium have different effect on the stability of the geopolymers. The single addition of chromium oxide or elemental Cr may reduce the total pore volume of the geopolymers, whereas the average pore size increases obviously for the geopolymers with addition of a variety of other heavy metal compounds.

Key words:  inorganic non-metallic materials      geopolymer      heavy metal      compressive strength      reaction product      pore structure     
Received:  12 September 2016     
Fund: Supported by National Natural Science Foundation of China (No.51478328), Natural Science Foundation of Shanghai of China (No.17ZR1442000) and Fundamental Research Funds for the Central Universities (No.0500219225)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.533     OR     https://www.cjmr.org/EN/Y2017/V31/I6/437

Na2O MgO Al2O3 SiO2 P2O5 SO3 Fe2O3 K2O CaO TiO2 Loss
0.45 0.85 22.40 40.70 0.71 2.17 5.34 0.69 9.46 1.16 16.09
Table 1  Chemical composition of fly ash (%, mass fraction)
Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 PbO
0.87 1.47 0.47 3.77 12.50 7.22 1.26 0.33 6.78 0.28 0.09
Cr2O3 MnO Fe2O3 CoO NiO CuO ZnO SrO SnO2 Loss
18.40 0.19 23.80 0.16 8.53 4.27 4.26 0.02 0.24 5.09
Table 2  Chemical composition of metallurgical sludge (%, mass fraction)
Fig.1  XRD spectra of main raw materials (a) fly ash, (b) metallurgical sludge
Samples Heavy metals Fly ash Heavy metal Alkali activator Water
F - 100.0 - 53.9 1.9
F- Cr(NO3)3 Cr(NO3)3 100.0 1.0 53.9 1.9
F- Pb(NO3)2 Pb(NO3)2 100.0 1.0 53.9 1.9
F- Cu(NO3)2 Cu(NO3)2 100.0 1.0 53.9 1.9
F- Cr(NO3)3-0.5 Cr(NO3)3 100.0 0.5 53.9 1.9
F- Cr(NO3)3-1.0 Cr(NO3)3 100.0 1.0 53.9 1.9
F- Cr(NO3)3-1.5 Cr(NO3)3 100.0 1.5 53.9 1.9
F-Cr(NO3)3 Cr(NO3)3 100.0 1.0 53.9 1.9
F-Cr2O3 Cr2O3 100.0 1.0 53.9 1.9
F- CrO3 CrO3 100.0 1.0 53.9 1.9
F-Cr Cr 100.0 1.0 53.9 1.9
F-MS Metallurgical sludge 100.0 1.0* 53.9 1.9
Table 3  Mix proportions of geopolymer contained different types, contents and chemical forms of heavy metals(g)
Fig.2  Compressive strength of geopolymer contained different types of heavy metals
Fig.3  XRD spectra of geopolymers contained different types of heavy metals
Fig.4  Integral and differential curves of pore diameter distribution of geopolymer contained different types of heavy metals (a) F, (b) F-Cr(NO3)3, (c) F-Pb(NO3)2, (d) F-Cu(NO3)2
Fig.5  Compressive strength of geopolymer contained different contents of Cr(NO3)3
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3 0.0865 12.19 0 63.2 23.1 13.7
F-Pb(NO3)2 0.0425 12.83 0 62.8 22.9 14.3
F-Cu(NO3)2 0.0611 9.55 0 67.1 21.4 11.5
Table 4  Pore structure parameter of geopolymer contained different types of heavy metals
Fig.6  XRD spectra of geopolymers contained different contents of heavy metals
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3-0.5 0.0484 13.23 0 66.5 21.9 11.6
F-Cr(NO3)3-1.0 0.0865 12.19 0 63.2 23.1 13.7
F-Cr(NO3)3-1.5 0.0660 9.59 0 62.1 24.0 13.9
Table 5  Pore structure parameter of geopolymer contained different contents of heavy metals
Fig.7  Integral and differential curves of pore diameter distribution of geopolymer contained different contents of heavy metals (a) F, (b) F-Cr(NO3)3-0.5, (c) F-Cr(NO3)3-1, (d) F-Cr(NO3)3-1.5
Fig.8  Compressive strength of geopolymer contained different chemical forms of heavy metals
Fig.9  XRD spectra of geopolymers contained different chemical forms of heavy metals
Fig.10  Integral and differential curve of pore diameter distribution of geopolymer contained different chemical forms of heavy metals (a) F, (b) F-Cr(NO3)3, (c) F-Cr2O3, (d) F-CrO3, (e) F-Cr, (f) F-MS
Samples Total pore volume
/mLg-1
Average diameter
/nm
Pore size distribution / %
<2 nm 2~20 nm 20~50 nm >50 nm
F 0.0511 11.41 0 63.2 23.5 13.3
F-Cr(NO3)3 0.0865 12.19 0 63.2 23.1 13.7
F-Cr2O3 0.0426 18.45 0 65.8 15.4 18.8
F-CrO3 0.0378 17.19 0 63.5 16.3 20.2
F-Cr 0.0315 15.34 0 69.7 14.5 15.8
F-MS 0.0231 29.68 0 47.2 31.2 21.6
Table 6  Pore structure parameter of geopolymer contained different chemical forms of heavy metals
[1] Davidovits J.Geopolymer Chemistry and Applications[M]. France: Geopolymer Institute, 2008
[2] Li S.Inorganic polymer-statusin geopolymer material[J]. J. Funct. Mater., 2007, 38: 3549
[2] (李松. 无机聚合物-地聚合物材料的现状[J]. 功能材料, 2007, 38: 3549)
[3] Jin M T.Immobilization of heavy metals in municipal solid waste incineration (MSWI) fly ash with geopolymer [D]. Nanjing: Nanjing University of Science and Technology, 2011
[3] (金漫彤. 地聚合物固化生活垃圾焚烧飞灰中重金属的研究 [D]. 南京: 南京理工大学, 2011)
[4] Van Jaarsveld J G S, Van DeventerJ S J, Lorenzen L. Factors affecting the immobilization of metals in geopolymerized fly ash[J]. Metall. Mater. Trans., 1998, 29B: 283
[5] Zhu Q, Lu D Y.Preparation and compatibility of geopolymer matrix for stabilization/solidification of heavy metal ions[J]. J. Nanjing. Univ. Technol.(Nat. Sci. Ed.), 2010, 32(3): 61
[5] (朱强, 卢都友. 固化重金属离子用地质聚合物基体的制备及其离子相容性[J]. 南京工业大学学报(自然科学版), 2010, 32(3): 61)
[6] Zhang Y S, Sun W, Chen Q L, et al.Synthesis and heavy metal immobilization behaviors of slag based geopolymer[J]. J. Hazard. Mater., 2007, 143: 206
[7] Zhang J L, Provis J L, Feng D W, et al.Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+[J]. J. Hazard. Mater., 2008, 157: 587
[8] Xu J L, Zhou Y L, Chang Q, et al.Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers[J]. Mater. Lett., 2006, 60: 820
[9] Jing M T, Zhang Q, Lou M X, et al.Immobilization of heavy metal ions in fly ashed-geopolymer[J]. Bullet. Chin. Ceram. Soc., 2007, 26: 467
[9] (金漫彤, 张琼, 楼敏晓等. 粉煤灰用于土壤聚合物固化重金属离子的研究[J]. 硅酸盐通报, 2007, 26: 467)
[10] Phair J W, Van Deventer J S J, Smith J D. Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers”[J]. Appl. Geochem., 2004, 19: 423
[11] Everett D H.Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure Appl. Chem., 1972, 31: 577
[12] Zheng L, Wang W, Shi Y C.The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer[J]. Chemosphere, 2010, 79: 665
[13] Wang X, Yan B L, Wang L, et al.The research on capturing several heavy metal irons and its stability of C-S-H with different Ca/Si[J]. Bullet. Chin. Ceram. Soc., 2012, 31: 1356
[13] (王昕, 颜碧兰, 汪澜等. 不同钙硅比C-S-H对多种重金属离子的俘获及其稳定性[J]. 硅酸盐通报, 2012, 31: 1356)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!