Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 465-471    DOI: 10.11901/1005.3093.2016.512
Orginal Article Current Issue | Archive | Adv Search |
Properties of Nano-composite Powders of NiCrCoAlY-TiB2 Prepared by High Energy Ball Milling for High Velocity Air Fuel Spraying
Jizhong WANG1,2,Xiaozhou CHE1,Yaosha WU2,Gang WANG1,2,Hongya YU1,2,Dechang ZENG1()
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2. Gent Materials Surface Technology (Guangdong) Co., Ltd, Zhongshan 528437, China
Cite this article: 

Jizhong WANG,Xiaozhou CHE,Yaosha WU,Gang WANG,Hongya YU,Dechang ZENG. Properties of Nano-composite Powders of NiCrCoAlY-TiB2 Prepared by High Energy Ball Milling for High Velocity Air Fuel Spraying. Chinese Journal of Materials Research, 2017, 31(6): 465-471.

Download:  HTML  PDF(6047KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Flowability is a prerequisite for the applicability of powders for thermal spraying. Nanoscale feedstock of NiCrCoAlY-TiB2MMCs (metal matrix composites) was synthesized by high energy ball milling method with NiCrCoAlY and TiB2 powders as raw material, and argon as shielding gas. The milled powder was characterized by scanning electron microscope, X-ray diffraction, apparent density tester, tap-density tester, repose angle tester and laser scattering. The results show that after wet-milled at 320 r/min for 20 h and dry-milled at 220 r/min for 5 h, a stable nanoscale feedstock of NiCrCoAlY-TiB2 MMCs was obtained. The particle size ranges from 5 to 50 μm and a majority of the powders shows ellipsoidal morphology which is expected to have good fluidity during HVOF spraying. Compared with the initial mixed powders, the repose angle of milled powders reduces from 38.4° to 32.9°, HR value reduces from 1.925 to 1.248, indicating the flowability has been improved obviously.

Key words:  composite      NiCrCoAlY-TiB2 nanostructured feedstock      high energy ball milling      cermet      nano-powder     
Received:  29 August 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.512     OR     https://www.cjmr.org/EN/Y2017/V31/I6/465

Material Ni Cr Co Al Y Si B C Fe Ti O N
NiCrCoAlY Bal. 16~22 4~8 3~7 0.2~0.6 - - 0.2~0.7 <1 - - -
TiB2 - - - - - - 30.8 0.13 0.15 68.2 0.4 0.02
Table 1  Chemical compositions of coating material TiB2 and NiCrCoAlY (%, mass fraction)
Hausner value Compressibility/% Flowability
<1.2 <15 Excellent
1.2~1.4 15~30 Good
1.4~2.0 30~50 Poor
>2.0 >50 Fail
Table 2  The relationship among compressibility, flowability and HR value
Fig.1  SEM images of (a) TiB2 powders, (b) NiCrCoAlY powders and (c) mechanical mixture powders
Fig.2  SEM images of NiCrCoAlY-TiB2 composite powders after (a, b) 5 h, (c, d) 10 h, (e, f) 20 h of ball milling and (g) cross-sectional SEM image, (h) after sieving
Fig.3  SEM images of NiCrCoAlY-TiB2 single agglomeration particle after (a) high energy ball milling and (b) its local magnification image
Fig.4  XRD spectra for powders milled for (a) 0 h, (b) 10 h, (c) 20 h
Fig.5  Particle size distribution in ball milled powder samples
Fig.6  The angle of repose/tapped density/bulk density/HR value of powders in different ball milling conditions
Fig.7  Grain size and lattice strain distributions of NiCrCoAlY-TiB2 powders after high energy ball milling
[1] Berger L M.Application of hard metals as thermal spray coatings[J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 350
[2] Wang B Q, Luer K.The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating[J]. Wear, 1994, 174(1): 177
[3] Houdková ?, Zahalka F, Ka?parová M, et al.Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement[J]. Tribol. Lett., 2011, 43(2): 139
[4] Bjordal M, Bardal E, Rogne T, et al.Combined erosion and corrosion of thermal sprayed WC and CrC coatings[J]. Surf.Coat. Technol., 1995, 70(2): 215
[5] Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior[J]. Mater. Sci. Eng. A., 2002, 336(1): 88
[6] Jones M, Horlock A J, Shipway P H, et al.A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide-and titanium boride-based cermet coatings[J]. Wear, 2001, 251(1): 1009
[7] Zhao H, Wang Q, Ding Z X, et al.Microstructural analysis of nanostructured WC-12Co coatings sprayedby HVOF[J]. Surface Technology, 2007, 36(4): 001
[7] (赵辉,王群,丁彰雄. HVOF喷涂纳米结构WC-12Co涂层的组织结构分析[J]. 表面技术, 2007, 36(4): 001)
[8] Kim B K, Ha G H, Lee G G, et al.Structure and properties of nanophase WC/Co/VC/TaC hardmetal[J]. Nanostructured Materials, 1997, 9(1): 233
[9] He J, Lavernia E J.Precipitation phenomenon in nanostructured Cr3C2-NiCr coatings[J]. Mater. Sci. Eng. A., 2001, 301(1): 69
[10] Sachan R, Park J W.Formation of nanodispersoids in Fe-Cr-Al/30% TiB2 composite system during mechanical alloying[J]. J. Alloys Compd., 2009, 485(1): 724
[11] Bruni G, Lettieri P, Newton D, et al.An investigation of the effect of the interparticle forces on the fluidization behavior of fine powders linked with rheological studies[J]. Chem. Eng. Technol., 2007, 62(1): 387
[12] Wu F Y.Study on flow properties of powders and characterization techniques [D]. Shanghai: East China University of Science and Technology, 2014
[12] (吴福玉,粉体流动特性及其表征方法研究[D]. 上海: 华东理工大学,2014)
[13] Abdullah E C, Geldart D.The use of bulk density measurements as flowability indicators[J]. Powder Technol., 1999, 102(2): 151
[14] Xiao J, Pan J, Liu X C.High energy ball milling and its application in the preparation of nanostructural magnetic materials[J]. Journal of Magnetic Materials and Devices, 2005, 01: 06
[14] (肖军, 潘晶, 刘新才. 高能球磨法及其在纳米晶磁性材料制备中的应用[J]. 磁性材料及器件, 2005, 01: 06)
[15] Dai L Y, Chen Q L, Lin S F, et al.Study on the main promotion factors of powder refinement in high-energy ball milling[J]. Materials Review, 2009, 23(11): 59
[15] (戴乐阳,陈清林,林少芬. 高能球磨中促进粉体细化的主要因素研究[J]. 材料导报, 2009, 23(11): 59)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!