Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 547-552    DOI: 10.11901/1005.3093.2016.510
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Compressive Property of Single-crystal Titanium Made by Multi-stage Annealing Treatment
Xiguang DENG1(), Songxiao HUI2, Wenjun YE2, Xiaoyun SONG2
1 Shenyang Aircraft Industry (Group) Co., Ltd., Shenyang 110034, China
2 State Key Laboratory of Non-ferrous Metals and Processing, General Research Institute for Non-ferrous Metals, Beijing 100088, China
Cite this article: 

Xiguang DENG, Songxiao HUI, Wenjun YE, Xiaoyun SONG. Preparation and Compressive Property of Single-crystal Titanium Made by Multi-stage Annealing Treatment. Chinese Journal of Materials Research, 2017, 31(7): 547-552.

Download:  HTML  PDF(2679KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Poly-crystal Ti with grain size larger than 12 mm was prepared through multi-stage heat treatment. Among which, the first stage of long time anneal at 860℃ could facilitate the grain growth of the original α phase, therewith reduced the total grain boundary area as a result; Meanwhile, low heating rate of 0.1℃/min in the second and low cooling rate of 0.1℃/min in the fourth stage were adopted to ensure the titanium slowly passing through the phase transformation point at 883℃ in order to restrain the number of nucleation. The orientation of hexagonal close packed (HCP) unit cell was constructed according to the Euler angle detected by electron backscatter diffraction (EBSD), and single-crystal compressive specimen was prepared for mechanical test and scanning electron microscope (SEM) observation. Slip band of 112?3112?2 type was determined, and the obvious influence of the grain orientation on mechanical behavior was analyzed by Schmid factor.

Key words:  metallic materials      non-ferrous alloy      single-crystal titanium      multi-stage annealing      Schmid factor     
Received:  30 August 2016     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of Cina (No. 51601016)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.510     OR     https://www.cjmr.org/EN/Y2017/V31/I7/547

Fig.1  Crystallographic orientation map of the as-received material
Fig.2  (0001) pole figure of the original structure
Fig.3  Schematic of multi-step annealing treatment
Fig.4  Schematic of the fixture with extensometer
Fig.5  EBSD test result and lattice orientation of single-crystal titanium derived from Euler angles of (158° 89° 249°)
Fig.6  Cuboid-shaped single-crystal specimen and the true stress strain curve
Fig.7  SEM images of slip band on the surface
Fig.8  Two 112?3112?2 slip systems and the corresponding slip bands
Slip system ? χ Schmid factor Status
1# 31.98 32.83 0.3775 activated
2# 31.19 31.73 0.3768 activated
3# 63.31 38.77 0.3129 non-
activated
4# 87.96 16.69 0.0341
5# 88.37 15.81 0.0274
6# 64.23 51.59 0.2432
Table 1  Calculated Schmid factor of six 112?3112?2 slip systems
Fig.9  Stress and strain curve of cylindrical single-crystal titanium specimen
[1] Gurrappa I.Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J]. Mater. Charact., 2003, 51(2-3): 131
[2] Qian J H.Application and development of new titanium alloy for aerospace[J]. Chinese Journal of Rear Metals, 2005, 24(3): 218(钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000, 24(3): 218)
[3] Yoo M.Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metall. Mater. Trans. A, 1981, 12(3): 409
[4] Lin P, Feng A, Yuan S, et al.Microstructure and texture evolution of a near-α titanium alloy during hot deformation[J]. Mater. Sci. Eng. A, 2013, 563(0): 16
[5] Zhan C K, Chen Z Y, Tang L.Anisotropy of compressive mechanical properties of annealed pure titanium sheet[J]. Journal of Central South University, 2012, 43(11): 4253(詹从堃, 陈志永, 唐林. 退火纯钛板压缩力学性能的各向异性[J]. 中南大学学报(自然科学版), 2012, 43(11): 4253)
[6] Li H W, Zhang X L, Chen J Y, et al.Effects of stress state on texture and microstructure in cold drawing-bulging of CP-Ti sheet[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 23(李宏伟, 张下陆, 陈甲元等. 纯钛板拉胀成形中应力状态对织构和微观组织的影响[J]. 中国有色金属学报(英文版), 2013, 23(1): 23)
[7] Huang W, Wang Y, Ge P, et al.Mesa-scale simulation on mechanical behavior of single crystal titanium[J]. Rare Metal Materials and Engineering, 2010, 39(3): 469(黄文, 汪洋, 葛鹏等. 单晶纯钛的细观力学性能模拟[J]. 稀有金属材料与工程, 2010, 39(3): 469)
[8] Fu H Z, Su Y Q, Guo J J, et al.The solidification behavior of high temperature intermetallics[J]. Acta Metall. Sin., 2002, 38(11): 1127(傅恒志, 苏彦庆, 郭景杰等. 高温金属间化合物的定向凝固特性[J]. 金属学报, 2002, 38(11): 1127)
[9] Ando S, Kitahara H, Tsushida M.Fatigue behavior of pure titanium single crystals by bending method[J]. Procedia Engineering, 2011, 10(0): 1384
[10] Tirry W, Nixon M, Cazacu O, et al.The importance of secondary and ternary twinning in compressed Ti[J]. Scripta Mater., 2011, 64(9): 840
[11] Lee Y T, Koh A S.Performing Euler angle rotations in cad systems[J]. Computer-Aided Design, 1995, 27(1): 75
[12] Arul Kumar M, Mahesh S.Banding in single crystals during plastic deformation[J]. Int. J. Plast., 2012, 36(0): 15
[13] Lütjering G, C Williams J. Titanium[M]. second ed Verlag Berlin Heidelberg: Springer, 2007
[14] Minonishi Y, Morozumi S, Yoshinaga H.{1122} <1123> slip in titanium[J]. Scripta Metallurgica, 1982, 16(4): 427
[15] Jones I P, Hutchinson W B.Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals[J]. Acta Metall., 1981, 29(6): 951
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!