Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 401-409    DOI: 10.11901/1005.3093.2016.438
Orginal Article Current Issue | Archive | Adv Search |
Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking
Wenshen YANG,Lin LANG,Xiuli YIN(),Chuangzhi WU
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
Cite this article: 

Wenshen YANG,Lin LANG,Xiuli YIN,Chuangzhi WU. Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking. Chinese Journal of Materials Research, 2017, 31(6): 401-409.

Download:  HTML  PDF(1908KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

AFI (AlPO4-5, CoAPO-5, SAPO-5, CrAPO-5, FeAPO-5 and MnAPO-5) molecular sieves were synthesized by hydrothermal method, and then single-walled carbon nanotubes (SWCNTs) with a diameter of 0.4 nm were prepared in the channels of these kind molecular sieves by low-temperature hydrocracking. The effect of the type and the amount of active metals, the hydrocracking temperature and the carbon content of template agents was investigated by means of XRD, NH3-TPD and micro-Raman spectroscopy. The results show that the addition of Si or active metal can improve the quantities of acid sites in the AFI molecular sieves, which can improve the density and quality of the SWCNTs in the channels of the hydrocracked AlPO4-5 molecular sieves. Besides, the hydrocracking temperature and the carbon content of template agents are also key influence factors for the preparation of SWCNTs.

Key words:  inorganic non-metalic materials AFI molecular sieves      SWCNTs      IRBM/IG      low-temperature hydrocracking     
Received:  25 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51661145022) and Guangdong Provincial Science and Technology Plan Project (No.2016A010104011)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.438     OR     https://www.cjmr.org/EN/Y2017/V31/I6/401

Fig.1  Schematic diagram of the apparatus for SWCNTs preparation via low-temperature hydrocracking
No. Gel composition Phase Crystallinity/%
(1) Al2O3: 1.3P2O5: 2.4TEA: 150H2O AlPO4-5 100
(2) Al2O3: 1.3P2O5: 2.4TPA: 150H2O AlPO4-5 109.7
(3) Al2O3: 1.3 P2O5: 0.075SiO2: 2.4TEA: 150H2O SAPO-5 115.9
(4) Al2O3: 1.3 P2O5: 0.075Cr2O3: 2.4TEA: 150H2O CrAPO-5 79.1
(5) Al2O3: 1.3 P2O5: 0.075Mn2O3: 2.4TEA: 150H2O MnAPO-5 77.4
(6) Al2O3: 1.3 P2O5: 0.075CoO: 2.4TEA : 150H2O CoAPO-5 74.6
(7) Al2O3: 1.3P2O5: 0.15CoO: 2.4TEA: 150H2O CoAPO-5 60.6
(8) Al2O3: 1.3 P2O5: 0.2CoO: 2.4TEA: 150H2O CoAPO-5 58.9
(9) Al2O3: 1.3 P2O5: 0.3CoO: 2.4TEA : 150H2O CoAPO-5,CoAPO-34 56.1
(10) Al2O3: 1.3 P2O5: 0.075Fe2O3: 2.4TEA: 150H2O FeAPO-5 75.4
(11) Al2O3: 1.3P2O5: 0.15Fe2O3: 2.4TEA: 150H2O FeAPO-5 61.3
(12) Al2O3: 1.3P2O5: 0.2Fe2O3: 2.4TEA: 150H2O FeAPO-5 57.6
(13) Al2O3: 1.3 P2O5: 0.3 Fe2O3: 2.4TEA: 150H2O FeAPO-5,FeAPO-34 52.2
Table 1  Synthetic compositions of the AFI molecular sieves and the final products analysis
Fig.2  XRD patterns of the synthesized molecular sieves (1) AlPO4-5 (TEA); (2) AlPO4-5 (TPA); (3) SAPO-5 (TEA); (4) CrAPO-5 (TEA, Cr/Al=0.0375); (5) MnAPO-5 (TEA, Mn/Al=0.0375); (6) FeAPO-5 (TEA, Fe/Al=0.0375); (7) CoAPO-5 (TEA, Co/Al=0.0375)
Fig.3  Raman spectrum of the SWCNTs in the samples hydrocracked at 350℃ (1) AlPO4-5 (TEA); (2) SAPO-5 (TEA); (3) CoAPO-5 (TEA,Co/Al=0.0375); (4) FeAPO-5 (TEA,Fe/Al=0.0375); (5) MnAPO-5 (TEA, Mn/Al=0.0375); (6) CrAPO-5 (TEA, Cr/Al=0.0375); (7) AlPO4-5 (TPA)
Fig.4  XRD patterns of the synthesized CoAPO4-5 (TEA) and FeAPO4-5 (TEA) molecular sieves: (1) Co/Al=0.0375; (2) Co/Al=0.075; (3) Co/Al=0.1; (4) Co/Al=0.15; (5) Fe/Al=0.0375; (6) Fe/Al=0.075; (7) Fe/Al=0.1; (8) Fe/Al=0.15
Fig.5  Raman spectrum of the SWCNTs in the channels of CoAPO4-5 (TEA) and FeAPO4-5 (TEA) crystals hydrocracked at 350℃ (1) Co/Al=0.0375; (2) Co/Al=0.075; (3) Co/Al=0.1; (4) Co/Al=0.15; (5) Fe/Al=0.0375; (6) Fe/Al=0.075; (7) Fe/Al=0.1; (8) Fe/Al=0.15
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
AlPO4-5(TEA) 80.959 / 1000.04 0.081
SAPO-5(TEA) 151.619 / 980.994 0.1545
FeAPO-5(TEA,Fe/Al=0.0375) 165.2357 / 978.439 0.1689
CoAPO-5(TEA,Co/Al=0.0375) 195.4236 / 1120.456 0.1772
MnAPO-5(TEA, Mn/Al=0.0375) 149.896 / 1050.78 0.142
CrAPO-5(TEA, Cr/Al=0.0375) 101.510 / 975.439 0.104
AlPO4-5(TPA) 382.71 420.81 3908.27 0.206
Table 2  Normalized integrated intensities of the Raman bands of SWCNTs prepared in the channels of different AFI crystals
Fig.6  NH3-TPD curves of CoAPO-5 molecular sieves (1) Co/Al=0; (2) Co/Al=0.0375; (3) Co/Al=0.075; (4) Co/Al=0.1; (5) Co/Al=0.15
Fig.7  Raman spectra of SWCNTs in AlPO4-5 (TEA) and AlPO4-5 (TPA) crystals hydrocracked at various temperatures (1) AlPO4-5 (TEA, 280℃), (2) AlPO4-5 (TEA, 300℃), (3) AlPO4-5 (TEA, 320℃), (4) AlPO4-5 (TEA, 350℃), (5) AlPO4-5 (TEA, 400℃), (6) AlPO4-5 (TPA, 280℃) (7) AlPO4-5 (TPA, 300℃), (8) AlPO4-5 (TPA, 320℃), (9) AlPO4-5 (TPA, 350℃) and (10) AlPO4-5 (TPA, 400℃)
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
CoAPO-5 (TEA,Co/Al=0.0375) 195.4236 / 1120.456 0.1772
CoAPO-5 (TEA,Co/Al=0.075) 194.6231 / 1092.709 0.1781
CoAPO-5 (TEA,Co/Al=0.1) 76.715 / 921.591 0.08324
CoAPO-5 (TEA,Co/Al=0.15) 62.493 / 768.427 0.08132
FeAPO-5(TEA,Fe/Al=0.0375) 165.2357 / 978.439 0.1689
FeAPO-5(TEA,Fe/Al=0.075) 159.371 / 645.2138 0.24
FeAPO-5(TEA,Fe/Al=0.1) 138.983 / 906.7461 0.1532
FeAPO-5(TEA,Fe/Al=0.15) 18.862 / 384.731 0.049
Table 3  Normalized integrated intensities of the Raman bands of SWCNTs prepared in the channels of CoAPO4-5 and FeAPO4-5 crystals with different Co/Al or Fe/Al ratio
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
AlPO4-5(TEA,320℃) 65.437 / 961.38 0.071
AlPO4-5(TEA,350℃) 80.959 / 1000.04 0.081
AlPO4-5(TPA,280℃) / 184.311 2220.61 0.083
AlPO4-5(TPA,300℃) / 261.144 2664.73 0.098
AlPO4-5(TPA,320℃) 439.984 420.709 4627.87 0.186
AlPO4-5(TPA,350℃) 382.71 420.81 3908.27 0.206
Table 4  Normalized integrated intensities of the Raman bands of SWCNTs prepared in the channels of AlPO4-5 (TEA) and AlPO4-5 (TPA) crystals hydrocracked at 280, 300, 320, 350 and 400℃
[1] Iijima S.Growth of carbon nanotubes[J]. Mat. Sci. Eng. B, 1993, 19(1): 172
[2] Awasthi K, Srivastava A, Srivastava O J.Synthesis of carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2005, 10: 1616
[3] Azam M A, Manaf N S A, Taalib E, et al. Aligned carbon nanotube from catalytic vapor deposition technique for energy storage device: a review[J]. Ionics, 2013, 11: 1455
[4] Tan L L, Ong W J, Chai S P, et al.Growth of carbon nanotubes over non-metallic based catalysts: a review on the recent developments[J]. Catal. Today., 2013, 217: 1
[5] Guo T, Nikolaev P, Thess A, et al.Catalytic growth of single-walled nanotubes by laser vaporation[J]. Chem. Phys. Lett., 1995, 243: 49
[6] Ebbesen T W, Ajayan P M.Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220
[7] Ivanov V, Nagy J B, Lambin P, et al.The study of carbon nanotubes produced by catalytic method[J]. Chem. Phys. Lett., 1994, 223: 329
[8] Tang Z K, Sun H D, Wang J, et al.Mono-sized single-wall carbon nanotubes formed in the channels of AlPO4-5 single crystals[J]. Appl. Phys. Lett., 1998, 73: 2287
[9] Wang Z, Shi W, Lortz R, et al.Superconductivity in 4-angstrom carbon nanotubes-a short review[J]. Nanoscale, 2012, 4: 21
[10] Zhang T, Sun M Y, Wang Z, Shi W, Sheng P.Crossover from Peierls distortion to one-dimensional superconductivity in arrays of (5, 0) carbon nanotubes[J]. Phys. Rev. B., 2011, 84: 245
[11] Xu R R, Pang W Q.Chemistry-zeolites and Porous Materials[M]. Beijing: Beijing Science Press, 2004
[11] (徐如人, 庞文琴. 分子筛与多孔材料化学 [M]. 北京: 北京科学出版社, 2004)
[12] Zhai J P, Tang Z K, Hu X J, et al.Catalytic growth of 0.4 nm single-walled carbon nanotubes aligned inside porous zeolite crystals[J]. Phys. Stat. Sol (b)., 2006, 243: 3082
[13] Yang W S, Liu X F, Zhang L, et al.In situ synthesis and microstructure manuipulation of SAPO-5 films over Porous α-Al2O3 substrates[J]. Langmuir, 2009, 25(4): 271
[14] Li Z M, Zhai J P, Liu H J, et al.Synthesis of 4 ? single-walled carbon nanotubes in catalytic Si-substituted AlPO4-5 molecular sieves[J]. Appl. Phys. Lett., 2004, 85(7): 1253
[15] Zhai J P, Li Z M, Liu H J, et al.Catalytic effect of metal cations on the formation of carbon nanotubes inside the channels of AlPO4-5 crystal[J]. Carbon, 2006, 44: 1151
[16] Zhai J P, Tang Z K, Li Z M, et al.Carbonization of mechanism of Tetrapropylammonium-hydroxide in channels of AlPO4-5 single crystals[J]. Chem. Mater., 2006, 18: 1505
[17] Chen Q H, Wang Z, Zheng Y, et al.New developments in the growth of 4 Angstrom carbon nanotubes in linear channels of zeolite template[J]. Carbon, 2014, 76: 401
[18] Li G D, Tang Z K, Wang N, et al.Structural study of the 0.4 nm single-wall carbon nanotubes aligned in channels of AlPO4-5 crystal[J].Carbon, 2002, 40: 917
[19] Yang W S, Sun W N, Zhao S H, et al.Single-walled carbon nanotubes prepared in small AlPO4-5 and CoAPO-5 molecular sieves by low-temperature hydrocracking[J]. Micropor. Mesopor. Mat., 2016, 219: 87
[20] Fan W B, Li R F, Dou T, et al.Solvent effects in the synthesis of CoAPO-5, -11 and -34 molecular sieves[J]. Micropor. Mesopor. Mat., 2005, 84: 116
[21] Hochtl M, Jentys A, Vinek H.Acidity of SAPO and CoAPO molecular sieves and their activity in the hydroisomerization of n-heptane[J]. Micropor. Mesopor. Mat., 1999, 31(3): 271
No related articles found!
No Suggested Reading articles found!