Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 203-210    DOI: 10.11901/1005.3093.2016.422
ARTICLES Current Issue | Archive | Adv Search |
Crystal Orientation Distribution of TC18 Titanium Fabricated by Electron Beam Wire Deposition
Wei DONG1(),Zhitao HUANG1,Hongmei LIU2,Guang YANG1,Yang YANG1,Fan YANG1
1 Beijing Aeronatical Manufacturing Technology Research Institute, Science and Technology on Power Beam Processes Laboratory, Beijing 100024, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100038, China
Cite this article: 

Wei DONG,Zhitao HUANG,Hongmei LIU,Guang YANG,Yang YANG,Fan YANG. Crystal Orientation Distribution of TC18 Titanium Fabricated by Electron Beam Wire Deposition. Chinese Journal of Materials Research, 2017, 31(3): 203-210.

Download:  HTML  PDF(1784KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TC18 titanium was fabricated by Electron Beam Wire Deposition (EBWD). The distribution of crystal orientation and columnar structure of the alloy was investigated. The results show that the macrostructure of TC18 titanium consisted of large columnar grains orientated perpendicular to the workbench plane. The forming of columnar structure is a process of directly epitaxial growth of the β grains on the melt-pool bottom. Crystal orientation distribution has clear regularities, β-α phase structure transition has inherited characteristics. Most of the β grain with <001> direction present a strong fiber texture with orientation difference less than 10°. There are obvious characteristics among different columnar crystals and distribution direction for TD, LD and normal surface ND. Burgers orientation relation was strictly followed in the process of βα. The lamella α phase precipitates within the same β grain satisfy the Burgers orientation relationship. There are 6 kinds of orientation for α phase in a columnar grain and there exists strong variant choice of orientations for βα transformation process.

Key words:  metallic materials      TC18 titanium      Electron Beam Wire Deposition      column crystal      epitaxial growth      textur     
Received:  21 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51205178) and Natural Science Foundation of Gansu Province (No.1208RJZA189)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.422     OR     https://www.cjmr.org/EN/Y2017/V31/I3/203

Fig.1  Schematic of TC18 samples fabricated by EBWD
Fig.2  Macrostructure of TC18 titanium fabricated by EBWD
Fig.3  Microstructure of TC18 titanium fabricated by EBWD
Fig.4  Texture pole figure and ODF of α phase texted by XRD

(a) {0002} (b) ODF (c) {100-1} (d) {101-1}

Fig.5  Texture pole figure of β phase texted by XRD (a) {110} (b) {100}
Fig.6  EBSD orientation imaging figure of TC18 fabricated by EBWD

(a) SEM image, (b) orientation maps of α phase and β phase, (c) α phase, (d) β phase

Fig.7  EBSD pole figures of TC18 fabricated by EBWD

(a) β phase (b) α phase

Fig.8  ODF figure of TC18 α phase
Fig.9  Orientation distribution difference of α phase
Fig.10  Schematic illustration of β grain-coarsening in HAZ beneath the melt-pool
Fig.11  Relationship between crystal α lamellar and β matrix
[1] Lou J, Suo H B, Liu J R, et al.Tensile properties of rapidly solidified TC18 titanium alloy with columnar crystal structure by electron-beam deposition[J]. Transactions of Materials and Heat Treatment, 2012, 23(6): 110
[1] (娄军, 锁红波, 刘建荣等. 电子束快速成形TC18 钛合金柱状晶组织的拉伸性能[J]. 材料热处理学报, 2012, 23(6): 110)
[2] Chen Z Y, Suo H B, Li J W, The forming character of electron beam freeform fabrication[J]. Aerosp. Manuf. Technol. 2010, (2): 36
[2] (陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 制造技术研究, 2010, (2): 36)
[3] Boyer R R.An over view on use of titanium in the aerospace industry[J]. Materials Science and Engineering, 1996, A213: 103
[4] Liu B, Fang Y L, Li A, et al.Abnormal grain coarsening of laser surface remelting rapidly solidified TA15 titanium alloy[J]. Rare Metal Materials and Engineering, 2009, 38(6): 5
[4] (刘彬, 方艳丽, 李安等. TA15钛合金激光表面重熔快速凝固晶粒异常粗化[J].稀有金属材料与工程, 2009, 38(6): 5)
[5] Bozzolo N, Dewobroto N, Grosdidier T, et al.Texture evolution during grain growth in recrystallized commercially pure titanium[J]. Materials Science and Engineering A, 2005, 397(1): 346-355
[6] Lütjering G, Williams J C.Titanium [M]. Beijing: Metallurgrical Industry Press, 2011
[6] (Lütjering G, Williams J C.钛[M]. 北京: 冶金工业出版社, 2011)
[7] Heller H W F, Dorp J H van, Wolff G, et al. Recrystallization behavior of left brace 110 right brace 112 direction aluminium single crystals after rolling and plane-straion deformation[J]. Metal Science, 1981, 15(8): 333
[8] Bozzolo N, Dewobroto N, Grosdidier T, et al.Texture evolution during grain growth in recrystallized commercially pure titanium[J]. Materials Science and Engineering A, 2005, 397(1): 346
[9] Torster F, Andres C, Lütjering G, et al.Correlation between texture and high temperature mechanical properties of the titanium alloy IMI834[J]. Zeitschrift für Metallkunde, 1999, 90(3): 174
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!