Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 517-525    DOI: 10.11901/1005.3093.2016.377
ARTICLES Current Issue | Archive | Adv Search |
Effect of Solution Temperature on Microstructure and Mechanical Property of High Temperature Alloy GH2787
Ling XU1,2(), Zhenxing GUO3, Dongmei ZHANG3, Changqing SUN1, Shuang ZHU1, Bingda WANG1, Yuxiu LI1, Chuanyong CUI2
1 Shenyang Institute of Engineering, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang Liming Aero-Engine Group Corporation, Shenyang 110043, China
Cite this article: 

Ling XU, Zhenxing GUO, Dongmei ZHANG, Changqing SUN, Shuang ZHU, Bingda WANG, Yuxiu LI, Chuanyong CUI. Effect of Solution Temperature on Microstructure and Mechanical Property of High Temperature Alloy GH2787. Chinese Journal of Materials Research, 2017, 31(7): 517-525.

Download:  HTML  PDF(9943KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of solution treatment temperatures on the microstructure and mechanical property of a high temperature alloy GH2787 was investigated. The results showed that the grain size of the alloy could be controlled by the solution temperature. When the solution temperature was higher than the solve temperature of γ' phase, the grain size was larger and the volume fraction of γ'- phase was low. When the solution temperature was lower than the solve temperature of γ'-phase, the grain size was smaller and the volume fraction of γ'-phase was high, and which was uniformly distributed in the alloy. η-phase precipitated when the solution temperature was around the solve temperature of γ'-phase. The Vickers hardness and the tension strength increased as the solution temperature decreased. The strengthening mechanisms of the alloy GH2787 might be ascribed to grain boundary strengthening and precipitation strengthening.

Key words:  metallic materials      GH2787      heat-treatment      microstructure      tension properties     
Received:  04 July 2016     
ZTFLH:  TG171  
Fund: Supported by National Basic Research Program of China (No. 2010CB631206), National Natural Science Foundation of China (Nos. 51171179, 51128101 & 51271174) and the Program of “One Hundred Talented People ” of the Chinese Academy of Sciences

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.377     OR     https://www.cjmr.org/EN/Y2017/V31/I7/517

Fig.1  The phase diagram of GH2787 calculating using Thermo-Calc
Elements C Cr Ni W Mo Al Ti B Mn Si P S Fe
0.07 15.05 34.9 3.17 <0.6 1.1 3.0 0.015 <0.05 0.06 0.003 <0.002 Bal.
Table 1  Composition of GH2787 alloy (mass fraction, %)
Fig.2  OM image showing the microstructure of the alloy after 50% rolling deformation
Fig.3  OM images showing the microstructure of the alloy after rolling deformation (a) rim section, (b) core section
Fig.4  OM images showing the microstructure of the alloy after heat-treatment above γ’ phase solve temperature (a) 980℃, (b) 960℃
Fig.5  SEM image showing the microstructure of the alloy after heat-treatment at 980℃
Fig.6  OM image showing the microstructure of the alloy after heat-treatment around γ’ phase solve temperature (a) 940℃, (b) 920℃
Fig.7  SEM image showing the microstructure of the alloy after heat-treatment at 940℃
Fig.8  SEM image showing the microstructure of the alloy after heat-treatment below γ’ phase solve temperature
Fig.9  SEM image showing the microstructure of the alloy after solution at 900℃
Fig.10  TEM image showing the microstructure of the needle phase (a) bright filed image, (b) dark field image
Fig.11  The diffraction pattern of the needle precipitation phase
GH2787 Ni Cr W Ti Al Fe
Precipitation 57.24 7.85 - 12.50 1.31 21.09
Matrix 31.60 18.04 2.29 2.34 0.94 44.78
Table 2  Composition of the needle phase (mass fraction, %)
Fig.12  Vickers hardness of the test alloys as a function of the temperature
Fig.13  Tension properties of the alloy after heat-treatment at 25℃ (a) and 550℃ (b)
Solution temperature/℃ Tension temperature /℃ σ0.2
/MPa
σb
/MPa
δ
/%
900 25 680 1037 31.5
550 615 915 26.5
750 635 665 43.5
940 25 586 1068 36.5
550 530 896 32.5
750 580 600 19.5
980 25 526 984 46.5
550 465 790 36.5
Table 3  Tension properties of the alloy after heat-treatment at various temperatures
Fig.14  The deformation microstructure at 25℃ after 900℃ solution heat-treatment
Fig.15  Deformation microstructure at 25℃ after 940℃ solution heat-treatment
Fig.16  TEM images of deformation microstructure at 25℃ after 980℃ solution heat-treatment
[1] Chen G L.Theory of Superalloy [M]. Beijing: Metallurgical Industries Press, 1988(陈国良. 高温合金学[M]. 北京: 冶金工业出版社, 1988)
[2] Guo J T.Material Science of Superalloy [M]. Beijing: Science Press, 2008(郭建亭. 高温合金材料[M]. 北京: 科学出版社, 2008)
[3] Zhou R F, Han Y F, Li S S.High Temperature Structure Materials [M]. Beijing: National Defense Industry Press, 2006(周瑞发,韩雅芳,李树索. 高温结构材料[M]. 北京: 国防工业出版社, 2006)
[4] Zhao C Z, Li F Y,Liu N.Research on heat treatment of GH2787 alloy[J]. Physics Examination and Testing, 2013, 31: 6(赵成志, 李凤艳, 刘宁. GH2787合金热处理工艺[J]. 物理测试, 2013, 31: 6)
[5] Zeng Y P, Liu J Q, Xie X S.Microstructure and properties analysis of a new wrought superalloy[J]. Acta Metall. Sin., 2008, 44: 540(曾燕屏, 刘建强, 谢锡善. 一种新型变形高温合金的组织与性能分析[J]. 金属学报, 2008; 44: 540)
[6] Yang J, Dong J X, Jia J.High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98[J]. Acta Metall. Sin., 2013, 49: 71(杨建, 董建新, 贾建. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究[J].金属学报, 2013, 49: 71)
[7] Heo Y U, Takeguchi M, Furuya K.Transformation of DO24 η-Ni3Ti phase to face-centered cubic austenite during isothermal aging of an Fe-Ni-Ti alloy[J]. Acta Mater., 2009, 57: 1176
[8] Xu L, Cui C Y, Sun X F.The effects of Co and Ti additions on microstructures and compressive strength of Udimet710[J]. Mater. Sci. Eng., 2011, 528: 7851
[9] Wang Y, Sun F, Dong X P.Thermodynamic study on equilibrium precipitation phases in a novel Ni-Co base superalloy[J]. Acta Metall. Sin., 2010, 46: 334(王衣,孙峰,董显平. 新型Ni-Co基高温合金中平衡析出相的热力学研究[J]. 金属学报, 2010, 46: 334)
[10] Gu Y F, Fukuda T, Cui C.Comparison of Mechanical Properties of TMW Alloys, New Generation of Cast-and-Wrought Superalloys for Disk Applications[J]. Met. Mater. Trans., 2009, 40A: 3047
[11] Yuan Y, GuY F, Osada T.Deformation mechanisms in a new disc superalloy at low and intermediate temperatures[J]. Scr. Mater., 2012, 67: 137
[12] Zhong Z, Gu Y, Yuan Y.On the low cycle fatigue behavior of a Ni-base superalloy containing high Co and Ti contents[J]. Mater. Sci. Eng., 2012, A 552: 434
[13] Cui C Y, Gu Y F, Ping D H.Microstructural Evolution and Mechanical Properties of a Ni-Based Superalloy, TMW-4[J]. Met. Mater. Trans., 2009, 40A: 282
[14] Cui Y, Gu Y F, Ping D H.The evolution of η phase in Ni-Co base superalloys[J]. Mater. Sci. Eng., 2008, A485: 651
[15] Hayes R W.On the creep behavior of the Ti3Al titanium aluminide Ti-25Al-10Nbs-3V-1Mo[J]. Acta Metall., 1982, 30: 1295
[16] Shankar V, Valsan M,Rao K B S. Effects of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625[J]. Metall. Mater. Trans., 2004, 35A: 3129
[17] Sharghi-Mashtaghin R, Asgari S.The characteristics of serrated flow in superalloy IN738LC[J]. Mater. Sci. Eng., 2008, A486: 376
[18] Roy A K, Pal J, Mukhopadhyay C.Dynamic strain ageing of an austenitic superalloy temperature and strain rate effects[J]. Mater. Sci. Eng., 2008, A474: 363
[19] Condat M, Décamps B.Shearing of γ' precipitates by single a/2 <110> matrix dislocations in a γ/γ' Ni-based superalloy[J]. Scr. Metall., 1987, 21: 607
[20] Reppich B, Schepp P, Wehner G.Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys-I. Theoretical concept[J]. Acta Metall., 1982; 30: 95
[21] Pope D P, Ezz S S.Mechanical properties of Ni3AI and nickel-base alloys with high volume fraction of γ' [J]. Int. Met. Rev., 1984, 29: 136
[22] Décamps B, Morton A J, Condat M.On the mechanism of shear of γ′ precipitates by single (a/2)<110> dissociated matrix dislocations in Ni-based superalloys[J]. Philos. Mag., 1991, 64A: 641
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!