Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 195-202    DOI: 10.11901/1005.3093.2016.346
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Wear Resistance of Composite Coatings Ni-Co/WC+G
Xusheng WANG1,Guirong YANG1(),Wenming SONG1,2,Jian LI3,Ying MA1,Yuan HAO1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Lanpec Technologies Limited, Lanzhou 730070, China
3 Wuhan Research Institute of Materials Protection, Wuhan 430030, China
Cite this article: 

Xusheng WANG,Guirong YANG,Wenming SONG,Jian LI,Ying MA,Yuan HAO. Microstructure and Wear Resistance of Composite Coatings Ni-Co/WC+G. Chinese Journal of Materials Research, 2017, 31(3): 195-202.

Download:  HTML  PDF(1237KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite coatings of Ni-Co/WC+G were fabricated on steel ZG45 by vacuum cladding. Their microstructure and phase constituents were characterized by SEM and XRD. The effect of graphite content on the wear behavior was investigated by experiment of tribology. The results show that the composite coatings present 3D texture-like structure with many “micro-pores” due to the addition of graphite,which could act as lubricant and thus improve tribological property of the composite coating. The friction coefficient, wear rate and wear loss of the GCr15 plate decreased with the increasing graphite content until the graphite content reaches 6%. The wear loss of the GCr15 plate with 8% graphite abruptly increased by 70% compared with the one with 6% graphite.

Key words:  composite      texture      vacuum cladding      nickel-cobalt      graphite      friction-wear property     
Received:  21 June 2016     
Fund: Supported by National Natural Science Foundtion of China (No.51205178) and Natural Science Foundation of Gansu Province (No.1208RJZA189)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.346     OR     https://www.cjmr.org/EN/Y2017/V31/I3/195

Fig.1  Schematic of pin-on-disc friction and wear testing
Fig.2  XRD pattern of composite coating
Fig.3  Microstructures of Ni-Co/WC+G composite coating,

(a) whole coating, (b) fusion zone, (c) belt of WC, (d) EDS scannings along the line in Fig.c, (e) transition zone, (f) composite zone

Fig.4  Friction coefficient and wear rate as a function of graphite content
Fig.5  Variations of the wear loss of GCr15 plate with the content of graphite
Fig.6  The worn surface morphologies of composite coatings with different contents of graphite

(a) 2%G, (b) 4%G, (c) 6%G, (d) 8%G, (e) EDS map of C on the worn surface (c), (f) amplified morphology of (d)

C O Fe Cr Co Ni W
Points L 6.6 43.9 30.9 5.1 2.1 5.3 6.2
H 26.3 6.6 52.6 6.7 2.3 4.1 1.4
M 68.2 7.5 12.7 4.3 3.1 4.2 -
Table 1  Main element compositionsin different micro-areas marked in Fig.6 (%, atomic fraction)
Fig.7  EDS map of C on the surface of 6%G composite coating
Fig.8  Hardness of the composite coatings with different contents of graphite
[1] Otsubo F, Era H, Kishitake K.Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron[J].J. Thermal Spray Technol., 2000, 9: 107
[2] Angelastro A, Campanelli S L, Casalino G, et al.Optimization of Ni-based WC/Co/Cr composite coatings produced by multilayer laser cladding[J]. Adv. Mater. Sci. Eng., 2013, 2013: 615464
[3] Xu J S, Zhang X C, Xuan F Z, et al.Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle[J]. J. Mater. Eng. Perform., 2012, 21: 1904
[4] Sari N Y, Yilmaz M.Improvement of wear resistance of wire drawing rolls with Cr-Ni-B-Si+WC thermal spraying powders[J]. Surf. Coat. Technol., 2008, 202: 3136
[5] Qin R Y, Zhang X J, Guo S Q, et al.Laser cladding of high Co-Ni secondary hardening steel on 18Cr2Ni4WA steel[J]. Surf. Coat. Technol., 2016, 285: 242
[6] Li F, Liu C S, Chen S Y, et al.Laser cladding Ni-Co duplex coating on copper substrate[J]. Opt. Lasers Eng., 2010, 48: 792
[7] Jing Q F, Tan Y F, Tang J, et al. Microstructure and mechanical properties of cobalt alloy coating deposited by electro-spark[J]. Adv. Mater. Res., 2014, 881-883: 1400
[8] Zhang X F, Zhang X L, Wang A H, et al.Microstructure and properties of HVOF Sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating[J].Trans. Nonferrous Metals Soc. China, 2009, 19: 85
[9] Yin Y G, Liu J W, Zheng Z X, et al.Effect of graphite on the friction and wear properties of Cu alloy-matrix self-lubricating composites at elevated temperature[J]. Tribology, 2005, 25: 216
[9] (尹延国, 刘君武, 郑治祥等. 石墨对铜基自润滑材料高温摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25: 216)
[10] Yang G R, Huang C P, Song W M, et al. The effect of graphite content on the wear behavior of Ni/WC/G composite coating [J]. Adv. Mater. Res., 2015, 1120-1121: 702
[11] Zhao L, Cai Z B, Zhang Z C, et al.Tribological properties of graphene as effective lubricant additive in oil on textured bronze surface[J]. Chin. J. Mater. Res., 2016, 30(1): 57
[11] (赵磊, 蔡振兵, 张祖川等. 石墨烯作为润滑油添加剂在青铜织构表面的摩擦磨损行为[J]. 材料研究学报, 2016, 30(1): 57)
[12] Hu T C, Ding Q, Hu L T.The effect of laser texturing of GCr15 steel surfaces on their tribological properties[J]. Tribology, 2011, 31: 447
[12] (胡天昌, 丁奇, 胡丽天. 激光表面织构化对GCr15钢摩擦磨损性能的影响[J]. 摩擦学学报, 2011, 31: 447)
[13] Lu J B, Meng P, Fan P,et al.Nucleation and growth of Cr7C3 at interface of brazed diamond with Ni-Cr alloy under protective atmosphere[J]. Trans. China Weld. Institut., 2012, 33(9): 65
[13] (卢金斌, 孟普, 樊平等. Ni-Cr合金保护气氛钎焊金刚石界面Cr7C3的形核与长大[J]. 焊接学报, 2012, 33(9): 65)
[14] Yang G R, Huang C P, Song W M, et al.Microstructure characteristics of Ni/WC composite cladding coatings[J]. Int. J, Miner., Metall. Mater., 2016, 23: 184
[15] Zhang Y F, Yang G R, Huang C P, et al.Wear resistance of a texture-like nickel-based composite coating[J]. Chin. J. Mater. Res.,2015, 29(9): 679
[15] (张玉福, 杨贵荣, 黄超鹏等. 类表面织构化镍基复合涂层的摩擦磨损性能[J]. 材料研究学报, 2015, 29(9): 679)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!