Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 129-135    DOI: 10.11901/1005.3093.2016.344
Orginal Article Current Issue | Archive | Adv Search |
Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel
Bin XU1,2,Chengyong MA2,Li LI1(),Xiaoming XIAO2,Jianfeng WANG1,2
1 College of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093, China
2 Welding Institute, China Iron and Steel Research Institute Group,Beijing 100081,China
Cite this article: 

Bin XU,Chengyong MA,Li LI,Xiaoming XIAO,Jianfeng WANG. Effect of Heat Input on Microstructure and Property of Weld Joints of a 1200 MPa Grade HSLA Steel. Chinese Journal of Materials Research, 2017, 31(2): 129-135.

Download:  HTML  PDF(5116KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A 1200 MPa grade high-strength low-alloy (HSLA) steel was welded by metal active gas(MAG) welding method with filler material of GHS50NS welding wire by three different heat inputs. And then the effect of heat input on microstructure and property of the weld joints was investigated by means of optical microscopy, scanning electronmicroscopy, transmission electron microscopy and mechanical tests. The results indicate that the microstructure of weld joints consists mainly of acicular ferrite, a granular bainite and small amount of M-A by different heat inputs. With the increasing heat input, the amount of acicular ferrite was increased and its lath width was coarsened while the amount of granular bainite decreased, and the type of non metallic inclusions which promote the nucleation of acicular ferrite in weld joints was a complex oxide-sulfide Ti-Mn-Al-O-S. The strength and hardness of the welded joint decreases with the increase of heat input, but it has a good combination of strength and toughness. Along with the increase of heat input, the morphology of the impact fracture of the weld joint changed from fracture with mixed mode to brittle fracture. When the heat input is 20 kJ/cm, the comprehensive performance of the welded joint is the best.

Key words:  metallic materials      HSLA steel      heat input      weld metal      microstructure      mechanical properties     
Received:  19 June 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.344     OR     https://www.cjmr.org/EN/Y2017/V31/I2/129

Fig.1  Microstructure of base metal
Material C Si Mn Ni Co Cu Mo Cr
Steel 0.20 0.53 1.32 0.36 0.009 0.013 0.25 0.56
Deposited metal 0.083 0.49 1.00 0.35 -- 0.34 0.13 --
Table 1  Composition of experimental steels and deposited metal of GHS50NS (mass fraction,%)
Material Tensile strength
Rm/MPa
Yield strength
Rp0.2/MPa
Elongation
A/%
Section shrinkage Z/% AKV(-40℃) /J
Steel 1464 1246 12.5 60 24
Deposited metal 605 524 26.5 71 110
Table 2  Mechanical properties of experimental steels and deposited metal of GHS50NS
Fig.2  Groove size of the test plate (unit: mm)
Fig.3  Morphologies of welds with different heat inputs(a) 16 kJ/cm ,(b) 20 kJ/cm, (c) 25 kJ/cm
Fig.4  TEM micrographs of welds with different heat inputs (a) 16 kJ/cm, (b) 20 kJ/cm, (c) 25 kJ/cm
Fig.5  The energy spectrum analysis of inclusions in weld metal
Fig.6  The hardness distribution with different heat inputs
Heat input
/(kJ/cm)
Rod tensile test of weld metal Tensile test of welded joint
Tensile strength/MPa Yield strength/MPa Elongation
/%
Reduction of area/% Tensile strength
/MPa
Fracture location
16 658 580 26.5 76 823 Weld
20 698 591 27.5 78 788 Weld
25 629 515 29.5 74 755 Weld
Table 3  Mechanical properties of welded joints with different heat inputs
Fig.7  Impact fractograph of weld metal with different heat inputs (a) 16 kJ/cm, (b) 20 kJ/cm, (c) 25 kJ/cm
[1] Zou Z D, Li Y J, Yin S K.Welding and Engineering Application of Low-Alloy Q+A High Strength Steel [M]. Beijing: Chemical Industry Press, 2000: 1
[1] (邹增大, 李亚江, 尹士科. 低合金调质高强度钢焊接及工程应用 [M]. 北京: 化学工业出版社, 2000: 1)
[2] Xu W Q, Ren Y F.Present situation of welding processes for construction machinery structural components and their developing trends[J]. Construction Machinery and Equipment, 2005,(1): 50, 2005, (1): 50)
[3] Cao R, Zhu S S, Feng W, et al.Effects of weld metal property and fraction on the toughness of welding joints of a 8%Ni 980MPa high strength steel[J]. J. Mater. Process. Tech., 2011, 211: 759
[4] Zhu S S, Cao R, Feng W, et al.Study on weakest link of welding joint of a 980 MPa high strength steel[J]. Trans. China Weld. Inst., 2011, 32(2): 77
[4] (朱莎莎, 曹睿, 冯伟等. 980 MPa高强钢焊接接头薄弱环节的确定[J]. 焊接学报, 2011, 32(3): 77)
[5] Cao R, Feng W, Peng Y, et al.Analysis on impact property of welded joint HAZ of 980 MPa high strength steel[J]. Trans.China Weld. Inst., 2010, 31(8): 93
[5] (曹睿, 冯伟, 彭云等. 980 MPa级高强钢焊接接头HAZ冲击性能的分析[J]. 焊接学报, 2010, 31(8): 93)
[6] Davis C L, King J E.Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part 1. Fractographic evidence[J]. Metall. Mater. Trans., 1994, 25A: 563
[7] Du Q B, Ma C Y, Peng Y, et al.Effect of heat input on microstructure and performance of weld metal for Q890 high strength steel[J]. Mater. Sci. Technol., 2013, 21(5): 143
[7] (杜全斌, 马成勇, 彭云等. 热输入对Q890高强钢焊缝组织及性能的影响[J]. 材料科学与工艺, 2013, 21(5): 143)
[8] Qiao Y, Argon A S.Cleavage crack resistance of high angle grain boundaries in Fe-3%Si alloy[J]. Mech. Mater., 2003, 35: 313
[9] Qiao Y, Argon A S.Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe-2%Si alloy: experiments and modeling[J]. Mech. Mater., 2003, 35: 129
[10] Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I.Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior[J].Metallurg. Mater. Trans., 2003, 34A: 2505
[11] Zhao M C, Hanamura T, Qiu H, et al.Lath boundary thin-film martensite in acicular ferrite ultralow carbon pipeline steels[J]. Mater.Sci. Eng., 2005, 395A: 327
[12] Hanamura T, Yin F, Nagai K.Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size[J]. ISIJ Int., 2004, 44: 610
[13] Liu H J.Welding Metallurgy and Welding Performance [M]. Beijing: China Machine Press, 2007: 410
[13] (刘会杰. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2007: 410)
[14] An T B, Shan J G, Wei J S, et al.Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery[J]. J. Mech. Eng., 2014, 50(22): 42
[14] (安同邦, 单际国, 魏金山等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!