Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 187-194    DOI: 10.11901/1005.3093.2016.323
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Hydrophobic Properties of Diamond-like Carbon Films on PET Substrates
Lili SUN1,2,Peng GUO1,Xiaowei LI1,Peiling KE1,Aiying WANG1()
1 Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Lili SUN,Peng GUO,Xiaowei LI,Peiling KE,Aiying WANG. Preparation and Hydrophobic Properties of Diamond-like Carbon Films on PET Substrates. Chinese Journal of Materials Research, 2017, 31(3): 187-194.

Download:  HTML  PDF(837KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to achieve hydrophobic properties and good wear resistance of PET materials, diamond-like carbon films were deposited on PET substrates by linear ion beam (LIS) technology with varying ion beam current. The microstructure, morphology and wettability were analyzed, and the relationship between wetting behavior and surface morphology, microstructure, surface energy was investigated. The results show that the deposited diamond-like carbon film is typical amorphous carbon, its sp2/sp3 increased from 0.774 to 1.622 with increase of LIS current, which indicated the increased graphitization. Meanwhile, the water contact angle of PET increased from 63.51° to 103.7°. Further analysis found that the hydrophobicity can be attributed to the enhanced graphitization and formation of nano-micro structure, which could result in a decrease of surface energy. In addition, the transmissivity in visible light range of PET could reach to over 88.5%, which showed an enhanced effect within the range of 500~760 nm. Therefore, controlling proper surface morphology and low surface energy by plasma modification technology can effectively improve the hydrophobic properties of flexible polymer materials, while the transparency of PET material was maintained.

Key words:  organic polymer materials      hydrophobicity      diamond-like carbon      surface morphology      surface energy     
Received:  11 June 2016     
Fund: Supported by International Science & Technology Cooperation Program of China (No.2014DFG52430)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.323     OR     https://www.cjmr.org/EN/Y2017/V31/I3/187

Samples Deposition process
LIS current
/A
Ar etching
time/min
Bias
/V
Flow rate of CH4
/(mLmin-1)
Flow rate of Ar
/(mLmin-1)
1# - - - - -
2# 0.1 10 -100 6 30
3# 0.15 10 -100 6 30
4# 0.2 10 -100 6 30
Table 1  Parameters of the deposited DLC films
Fig.1  Water contact angle of different samples
Fig.2  Polar and dispersive component of surface energies of different samples
Fig.3  Raman spectra of PET after DLC film deposited

(a) 2# sample, (b) 3# sample, (c) 4# sample

Fig.4  Composition, fitted C 1s peaks and sp2/sp3 ratio for different samples

(a) composition, (b) 1# sample, (c) 2# sample, (d) 3# sample, (e) 4#sample, (f) sp2/sp3

Fig.5  Roughness of difference samples
Fig.6  SEM morphologies of different samples, (a) 1# sample, (b) 2# sample, (c) 3# sample, (d) 4# sample
Fig.7  Height between different samples with DLC deposited and PET substrate
Fig.8  Transmissivity of hydrophobic samples 3# and 4# in the scope of visible light
[1] Dong C L, Bai X Q, Yan X P, et al.Research status and advances on tribological study of materials under ocean environment[J]. Tribology, 2013, 33: 311
[1] (董从林, 白秀琴, 严新平等. 海洋环境下的材料摩擦学研究进展与展望[J]. 摩擦学学报, 2013, 33: 311)
[2] Niu M, Xue B X, Li J Y, et al.Preparation and properties of CMSs-An/PET flame retardant composites[J]. Chin. J. Mater. Res., 2015, 29(2): 143
[2] (牛梅, 薛宝霞, 李静亚等. CMSs-An/PET复合阻燃材料的制备和性能[J]. 材料研究学报, 2015, 29(2): 143)
[3] Wang T T, Wang X C, Zhao G D.Research progress in PET surface modification[J]. China Synthetic Fiber Ind., 2011, 34(4): 48
[3] (王甜甜, 王晓春, 赵国樑. PET表面改性研究进展[J]. 合成纤维工业, 2011, 34(4): 48)
[4] Gao S H, Zhou K S, Wen L S.Polymer surface amphiphobic modification by low temperature plasma[J]. Ploym. Mater. Sci. Eng., 2010, 26(1): 166
[4] (高松华, 周克省, 闻立时. 聚合物低温等离子体表面双疏改性的研究现状[J]. 高分子材料科学与工程, 2010, 26(1): 166)
[5] Woodward I, Schofield W C E, Roucoules V, et al. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films[J]. Langmuir, 2003, 19: 3432
[6] Guenther M, Sahre K, Suchaneck G, et al. Influence of ion-beam induced chemical and structural modification in polymers on moisture uptake [J]. Surf. Coat. Technol., 2001, 142-144: 482
[7] Cui F Z, Zheng C L.New progress of plasma surface engineering[J]. China Surf. Eng., 2003, 16(4): 7
[7] (崔福斋, 郑传林. 等离子体表面工程新进展[J]. 中国表面工程, 2003, 16(4): 7)
[8] Zhou H, Wang H X, Niu H T, et al.Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Adv. Mater., 2012, 24: 2409
[9] Bae G Y, Jeong Y G, Min B G.Superhydrophobic PET fabrics achieved by silica nanoparticles and water-repellent agent[J]. Fiber. Polym., 2010, 11: 976
[10] Zhou K, Ke P L, Wang A Y, et al.Electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique[J]. Chin. J. Mater. Res., 2014, 28(3): 161
[10] (周凯, 柯培玲, 汪爱英等. PECVD制备掺氮类金刚石薄膜的电化学特性[J]. 材料研究学报, 2014, 28(3): 161)
[11] Rahmawan Y, Jang K J, Moon M W, et al.Anti-biofouling coating by wrinkled, dual-roughness structures of diamond-like carbon (DLC)[J]. BioChip J., 2009, 3: 143
[12] Shin B S, Lee K R, Moon M W, et al.Extreme water repellency of nanostructured low-surface-energy non-woven fabrics[J]. Soft Matter, 2012, 8: 1817
[13] Pandiyaraj K N, Selvarajan V, Heeg J, et al.Influence of bias voltage on diamond like carbon (DLC) film deposited on polyethylene terephthalate (PET) film surfaces using PECVD and its blood compatibility[J]. Diam. Relat. Mater., 2010, 19: 1085
[14] Owens K, Wendt R C.Estimation of the surface free energy of polymers[J]. J. Appl. Polym. Sci., 1969, 13: 1741
[15] Bhushan B, Jung Y C.Micro-and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces[J]. Nanotechnology, 2006, 17: 2758
[16] Xu J H, Li M, Zhao Y, et al.Advance of wetting behavior research on the superhydrophobic surface with micro-and nano-strucutures[J]. Prog. Chem., 2006, 18: 1425
[16] (徐建海, 李梅, 赵燕等. 具有微纳米结构超疏水表面润湿性的研究[J]. 化学进展, 2006, 18: 1425
[17] Roy R K, Choi H W, Park S J, et al.Surface energy of the plasma treated Si incorporated diamond-like carbon films[J]. Diam. Relat. Mater., 2007, 16: 1732
[18] Li X B, Liu Y.Wetting mechanisms and models on solid surfaces[J]. Funct. Mater., 2007, 38(S1): 3919
[18] (李小兵, 刘莹. 固体表面润湿性机理及模型[J]. 功能材料, 2007, 38(S1): 3919)
[19] Jiang L W, Wang R, Yang B X, et al.Binary cooperative complementary nanoscale interfacial materials[J]. Pure Appl. Chem., 2000, 72: 73
[20] Casiraghi C, Ferrari A C, Robertson J.Raman spectroscopy of hydrogenated amorphous carbons[J]. Phys. Rev., 2005, 72B: 085401
[21] Dai W, Wu G S, Sun L L, et al.Effect of substrate bias on microstructure and properties of diamond-like carbon films by linear ion beam system[J]. Chin. J. Mater. Res., 2009, 23(6): 598
[21] (代伟, 吴国松, 孙丽丽等. 衬底负偏压对线性离子束DLC膜微结构和物性的影响[J]. 材料研究学报, 2009, 23(6): 598)
[22] Ostrovskaya L Y.Studies of diamond and diamond-like film surfaces using XAES, AFM and wetting[J]. Vacuum, 2002, 68: 219
[23] Asl A M, Kameli P, Ranjbar M, et al.Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films[J]. Superlattice. Microst., 2015, 81: 64
[24] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
[25] Feng L B, Zhang H X, Wang Z L, et al.Superhydrophobic aluminum alloy surface: fabrication, structure and corrosion resistance[J]. Colloids Surf.: Physicochem. Eng. Asp., 2014, 441A: 31
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
No Suggested Reading articles found!