Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 226-232    DOI: 10.11901/1005.3093.2016.322
ARTICLES Current Issue | Archive | Adv Search |
Chemical Precipitation-reflux Synthesis and Discharge Performance of Composite of Nickel Hydroxide /Reduced Graphene Oxide
Huiying YU1,Wenxiu HE1(),Yongqiang ZHANG1,Shengli AN1,Junhong LIU2
1 School of Chemistry and Chemistry Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
2 Baotou Professional Technology College, Baotou 014010, China
Cite this article: 

Huiying YU,Wenxiu HE,Yongqiang ZHANG,Shengli AN,Junhong LIU. Chemical Precipitation-reflux Synthesis and Discharge Performance of Composite of Nickel Hydroxide /Reduced Graphene Oxide. Chinese Journal of Materials Research, 2017, 31(3): 226-232.

Download:  HTML  PDF(1403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite of nickel hydroxide/reduced graphene oxide (Ni(OH)2/RGO) was synthesized by facile chemical precipitation-reflux method with graphite oxide and nickel sulfate hexahydrate as precursors and ammonium hydroxide as the precipitator. The surface morphology and microscopic structures of the composite were characterized by X-ray diffraction (XRD) and scan electron microscopy (SEM). The electrochemical performance of the composite was assessed by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The influence of different mass ratio of graphite oxide to nickel hydroxide (GO: Ni(OH)2) and the concentration of ammonium hydroxide on structures, morphologies, and electrochemical properties of the composite was investigated. The results show that the synthesized composite of β-Ni(OH)2/RGO has mutually inserted structure. The composite of β-Ni(OH)2/RGO exhibits high electrochemical performance of 334.9 mAh/g at 0.2C rate and 260.2 mAh/g at 5C rate when the concentration of ammonium hydroxide is 3 mol/L and the mass ratio of GO:Ni(OH)2 is 1:8, while the product can still maintain 90% of the theoretical specific capacity of β-Ni(OH)2. It displays that this electrode material has excellent electrochemical performance with excellent rate capability.

Key words:  composite      chemical precipitation-reflux method      β-Ni(OH)2      reduced graphene oxide      electrochemical performance     
Received:  12 June 2016     
Fund: Supported by the Natural Science Foundation of Inner Mongolia (Nos.2014MS0523 & 2015MS0208), Institutions of Higher Learning Youth Science & Technology Talents Planning-Youth Science & Technology Talents of Inner Mongolia Autonomous Region A Class Project (No.NJYT-14-A08) and Science & Technology Plan Project of Baotou (No.2015C2004-1)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.322     OR     https://www.cjmr.org/EN/Y2017/V31/I3/226

Fig.1  XRD patterns of the GN8(5M), GN10(3M) and GN8(3M) composites
Fig.2  FE-SEM images of pure Ni(OH)2 (a), GN8(5M) (b), GN10(3M) (c) and GN8(3M) (d) composites
Fig.3  CV curves of pure Ni(OH)2, GN8(5M), GN10(3M) and GN8(3M) electrode materials at the scan rate of 5 mV/s (a) and CV curves of GN8(3M) electrode material at various scan rates (b)
Fig.4  Charge/discharge curves of pure Ni(OH)2 and Ni(OH)2/RGO electrode materials at the rate of 0.2C
Fig.5  Discharge specific capacities curves of pure Ni(OH)2 and Ni(OH)2/RGO electrode materials at various rates
Fig.6  Cycling stability curves of pure Ni(OH)2 and Ni(OH)2 /RGO electrode materials at various rates
Fig.7  Electrochemical impedance spectroscopy (EIS) spectra and enlarge figures in high frequency region of pure Ni(OH)2 and Ni(OH)2/RGO electrode materials
[1] Fang Q, Xie S Y, Cheng Y, et al.Effects of nanoscale conductive additives on high temperature and high power performance of nickel electrodes[J]. Chin. J. Rare Metals, 2009, 33: 376
[1] (方庆, 谢守韫, 成艳等. 纳米导电剂对镍电极高温/高功率性能的影响[J]. 稀有金属, 2009, 33: 376)
[2] Tang Y G.Ni/MH Batteries[M]. Beijing: Chemical Industry Press, 2007: 100
[2] (唐有根. 镍氢电池[M]. 北京: 化学工业出版社, 2007: 100)
[3] Liang Y Y, Wu D Q, Feng X L, et al.Dispersion of graphene sheets in organic solvent supported by ionic interactions[J]. Adv. Mater., 2009, 21: 1679
[4] Wu Z, Huang X L, Wang Z L, et al.Electrostatic induced stretch growth of homogeneous β-Ni(OH)2 on Graphene with enhanced high-rate cycling for Supercapacitors[J]. Sci. Rep., 2014, 4: 3669
[5] Wang L N, Chen H Y, Cai F, et al.Hierarchical carbon nanotube/α-Ni(OH)2 nanosheet composite paper with enhanced electrochemical capacitance[J]. Mater. Let., 2014, 115: 168
[6] Zhang J L, Liu H D, Shi P, et al.Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite[J]. J. Power Sour., 2014, 267: 356
[7] Ji J Y, Zhang L L, Ji H X, et al.Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano, 2013, 7: 6237
[8] Yan J, Fan Z J, Sun W, et al.Advanced asymmetric Supercapacitors based on Ni(OH)2 /Graphene and porous Graphene electrodes with high energy density[J]. Adv. Funct. Mater., 2012, 22: 2632
[9] Kim Y, Cho E S, Park S J, et al.One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior[J]. J. Ind. Eng. Chem., 2016, 33: 110
[10] Zhu J W, Chen S, Zhou H, et al.Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance[J]. Nano Res., 2012, 5: 11
[11] Xie J F, Sun X, Zhang N, et al.Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film Supercapacitors with high electrochemical performance[J]. Nano Energy, 2013, 2: 65
[12] Huang Z N, Kou S Z, Jin D D, et al.Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J]. J. Funct. Mater., 2015, 46: 5084
[12] (黄振楠, 寇生中, 金东东等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料, 2015, 46: 5084)
[13] Fang D L, Chen Z D, Liu X, et al.Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors[J]. Electrochim. Acta, 2012, 81: 321
[14] Fu W D, Gong Y C, Wang M, et al.β-Ni(OH)2 nanosheets grown on graphene as advanced electrochemical pseudocapacitor materials with improved rate capability and cycle performance[J]. Mater. Let., 2014, 134: 107
[15] HummersJr W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339
[16] Sheng K X, Xu Y X, Li C, et al.High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater., 2011, 26: 9
[17] Li Z Q, Lu C J, Xia Z P, et al.X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon, 2007, 45: 1686
[18] Kim J, Kim Y, Park S J, et al.Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes[J]. J. Ind. Eng. Chem., 2016, 36: 139
[19] Watanabe K, Kikuoka T, Kumagai N.Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries[J]. J. Appl. Electrochem., 1995, 25: 219
[20] Nan J M, Tang Z Y, Liu J H, et al.XRD and Raman spectrometric characterization on Ni(OH)2 electrode materials[J]. Chin. J. Appl. Chem., 2001, 18: 108
[20] (南俊民, 唐致远, 刘建华等. Ni(OH)2电极材料的XRD和Raman光谱表征[J]. 应用化学, 2001, 18: 108)
[21] Xu M W, Bao S J, Li H L.Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J]. J. Solid State Electrochem., 2007, 11: 372
[22] Chen X A, Chen X H, Zhang F Q, et al.One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor[J]. J. Power Sour., 2013, 243: 555
[23] Lei H.Synthesis and property studies of high-capacity Ni-MH battery cathode materials [D]. Beijing: Beijing Nonferrous Metal Research Institute, 2014
[23] (雷浩. 高容量镍氢电池正极合成与性能研究 [D]. 北京: 北京有色金属研究总院, 2014)
[24] Yang Y.The preparation of Ni(OH)2 mixing with graphene oxide and studying the electrical performance [D]. Xinxiang: Henan Normal University, 2012
[24] (杨祎. 氢氧化镍掺杂氧化石墨烯的制备以及电性能的研究 [D]. 新乡: 河南师范大学, 2012)
[25] Yang W L, Gao Z, Wang J, et al.Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode[J]. Electrochim. Acta, 2012, 69: 112
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!