Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 175-181    DOI: 10.11901/1005.3093.2016.310
ARTICLES Current Issue | Archive | Adv Search |
Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel
Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, LanzhouUniversity of Technology, Lanzhou 730050, China
2 Key Laboratory of Nonferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI. Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel. Chinese Journal of Materials Research, 2017, 31(3): 175-181.

Download:  HTML  PDF(1360KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

304 stainless steels with different Al content were warm-rolled and subsequently solution-treated. The microstructure, phase constituent and composition of the alloys were characterized by means of OM, XRD and EPMA. The results show that black ferrite phase with shapes as strips, short rod and some granular-like distribute throughout the white austenite matrix;The majority of Al dissolves in the matrix,while there exist precipitates of AlN and other black-phases. The hardness and corrosion resistance of the steels increase gradually with the increasing rolling temperature, and their break elongation reaches about 47%. The deformation capacity of the steels is greatly improved and the tensile strength of the steel with 1% (mass fraction)Al achieves to 766 MPa. The fracture surfaces exhibit large and small dimples with size of 5~15 μm and ≤5 μm, respectively. The fracture models are similar and belong to ductile fracture. By the same rolling temperature the steel with 1.5% Al has better corrosion resistance performance.

Key words:  metallic materials      warm-rolled      tensile deformation      corrosion resistance      304 stainless steels     
Received:  03 June 2016     
Fund: Supported by National Natural Science Foundation of China (No.51561020)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.310     OR     https://www.cjmr.org/EN/Y2017/V31/I3/175

Steel Al Cr Ni Mn Si C Fe
1 1.0 17.82 8.91 1.98 0.99 0.08 Bal.
2 1.5 17.10 8.55 1.90 0.95 0.08 Bal.
Table 1  Composition analysis of the experimental alloys (%, mass fraction)
Fig.1  OM images of the alloy with the content of 1%Al at different rolling temperatures

(a) 550℃;(b) 600℃;(c) 650℃

Fig.2  OM images and XRD pattern of the alloy with the content of 1.5% Al at different rolling temperatures

(a) 550℃;(b) 600℃;(c) 650℃;(d) XRD

Fig.3  EPMA and elemental distribution of the warm-rolled 304 alloys with the contents of 1%Al (a) and 1.5%Al (b)
Temperature / ℃ Ferrite / % Average grain size / μm
550 21.0 14.61
600 18.4 18.89
650 14.1 25.48
Table 2  Ferrite content and average grain size of the 304 alloys with 1.5%Al at different warm-rolled temperatures
Temperature / ℃ Ferrite / % Average grain size / μm
550 8.5 21.05
600 6.3 22.27
650 4.0 24.91
Table 3  Ferrite content and average grain size of the 304 alloys with 1%Al at different warm-rolled temperatures
Fig.4  Hardness and elongation of the 304 stainless steel at different rolling temperatures (%, mass fraction)
Fig.5  The tensile stress-strain curves, yield strength and tensile strength of the 304 stainless steel at different rolling temperatures (%, mass fraction)(a) stress-strain curves; (b) yield strength and tensile strength
Fig.6  Tensile fracture morphologies of the 304 stainless steel at different rolling temperatures

(a) 1%Al+550℃; (b) 1%Al+600℃; (c) 1%Al+650℃; (d) 1.5%Al+550℃; (e) 1.5%Al+600℃; (f) 1.5%Al+650℃

Fig.7  Intergranular corrosion rate of the 304 stainless steel at different rolling temperatures (%, mass fraction)
[1] Luo W, Wang J, Yan J, et al.Low temperature salt bath nitriding of 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(10): 107
[1] (罗伟, 王均, 闫静等. 304奥氏体不锈钢低温盐浴渗氮处理[J]. 材料热处理学报, 2012, 33(10): 107)
[2] Gao Y K.Influence of impact enhancements on tensile property of 304 austenite steel[J]. Journal of Materials Engineering, 2014, 0(8): 36
[2] (高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响[J]. 材料工程, 2014, 0(8): 36)
[3] Marion R. Laure M, Kevin G G, et al.Dissolution and oxidation behavior of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520℃[J]. Journal of Nuclear Materials, 2016, 468: 153
[4] Xu X X, Zhang X F, Chen G L.Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels[J]. Materials Letters, 2011, 65(21-22): 3285
[5] Du N, Ye C, Tian W M, et al.304 stainless steel pitting behavior by means of electronchemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014, (6): 68
[5] (杜楠, 叶超, 田文明等. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, (6): 68)
[6] Yan X Y, Sun Y F, Zhang Y, et al.Effects of Al on high temperature oxidation resistance of ZG40Gr25Ni20 wear-resistance and heat-resistance steel[J]. Foundry Technology, 2010, 31(3): 292
[6] (闫兴义, 孙玉福, 张炎等. Al对ZG40Gr25Ni20抗磨耐热钢高温抗氧化性的影响[J]. 铸造技术, 2010, 31(3): 292)
[7] Keietsu K, Yukio M, Nariaki O.Development of corrosion-resistant improved Al-doped austenitic stainless steel[J]. Journal of Nuclear Materials, 2011, 417: 892
[8] La P Q, Li Y F, Liu S G, et al.The corrosion resistance of 316L stainless steel with Al[J]. Iron Steel, 2010, 45(5): 71
[8] (喇培清, 李玉峰, 刘闪光等. Al元素对316L不锈钢组织和室温力学性能的影响[J]. 钢铁, 2010, 45(5): 71)
[9] La P Q, Meng Q, Sa X R, et al.Microstructure and mechanical properties of hot-rolled high aluminum 304 stainless steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 55
[9] (喇培清, 孟倩, 撒兴瑞等. 高铝304不锈钢热轧态的显微组织和力学性能[J]. 材料热处理学报, 2014, 35(6): 55)
[10] Shi D K.Fundamentals of Materials Science [M]. Beijing: China Machine Press, 2015
[10] (石德珂. 材料科学基础[M]. 北京: 机械工业出版社, 2015)
[11] Liu S F, Zhang Y, Han H, et al.Effect of Al4C3 and Ce on as-cast microstructure and properties of AZ91D magnesium alloy[J]. Foundry, 2009, 58(6): 546
[11] (刘生发, 张元, 韩辉等. Al4C3和Ce对AZ91D镁合金铸态显微组织和性能的影响[J]. 铸造, 2009, 58(6): 546)
[12] Hu B, Trotter G, Baker I, et al.The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2015, 46A: 3773
[13] He L F, Roman P, Leng B, et al.Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science, 2014, 82: 67
[14] Yan Y F, Xu X Q, Zhou D Q, et al.Hot corrosion behavior and its mechanism of a new alumina-forming austenitic stainless steel in molten sodium sulphate[J]. Corrosion Science, 2013, 77: 202
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!