Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 409-414    DOI: 10.11901/1005.3093.2016.267
Orginal Article Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy
Xuemeng WANG,Siqian ZHANG(),Ziyao YUAN,Lijia CHEN
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy. Chinese Journal of Materials Research, 2017, 31(6): 409-414.

Download:  HTML  PDF(6077KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of solution treatment and aging treatment on microstructures and mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy bars have been investigated. The results show that the highest hardness and the highest tensile strength can be achieved by the solution and aging treatment (800℃×30 min/AC+510℃×16 h/AC), and an insignificant decline on elongation rate and necking rate is also acquired. The quantity and size of the ω-phases and α-phases result in the increase of hardness and strength of Ti-3Al-8V-6Cr-4Mo-4Zr alloy bars. A lot of dimples exist in the tensile fractures of the hot rolling alloys and heat treatment alloysdemonstrating a typical ductile fracture.

Key words:  metal materials      solution and aging treatment      tensile properties      tensile fracture     
Received:  18 May 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51101160 & 51501117), Liaoning Provincial Department of Enducation Project (No.L2014050)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.267     OR     https://www.cjmr.org/EN/Y2017/V31/I6/409

Fig.1  Age-hardening response of Ti-3Al-8V-6Cr-4Mo-4Zr alloy in 350~550℃
Fig.2  SEM images of Ti-3Al-8V-6Cr-4Mo-4Zr alloy in different heat treatmentconditions (a) origin (b) 800℃/30 min (c) 800℃/30 min +500℃/4 h (d) 800℃/30 min +500℃/12 h
σb/MPa σ0.2/MPa φ ψ
Hot rolling 1008.9 1002.4 21.96% 39.22%
800℃/30 min 958.0 954.2 16.33% 31.23%
800℃/30min +500℃/4 h 1205.2 1137.8 12.98% 16.94%
800℃/30min +500℃/12 h 1452.1 1436.9 12.75% 15.85%
800℃/30min +500℃/24 h 1440.2 1429.3 11.95% 14.87%
Table 1  Tensile properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy after heat treatments
Fig.3  SEM images of tensile fracture in different heat treatment conditions (a) origin, (b) 800℃/30 min, (c) 800℃/30 min+500℃/4 h, (d) 800℃/30 min+500℃/12 h
Fig.4  TEM images of microstructure in different heat treatment conditions (a), (b) 800℃/30 min+500℃/8 h; (c), (d) 800℃/30 min+500℃/12 h;(e), (f) 800℃/30 min+500℃/24 h
Fig.5  TEM images of dislocation in the heat treatment conditions 800℃/30 min+500℃/12 h after tensile deformation
[1] Weiss I, Semiatin S L.Thermomechanical processing of beta titanium alloys-an overiew[J]. Mater. Sci. Eng., A. 1998, (243): 46
[2] Ibrahim K M, Mhaede M, Wagner L.Microstructure evolution and mechanical properties ofheat treated LCB titanium alloy[J]. Trans. Nonferrous Met. Soc. China. 2012, (22):2609
[3] Koch B, Skrotzki B.Strain controlled fatigue testing of the metastable β-titanium alloy Ti-6.8Mo-4.5Fe-1.5Al (Timetal LCB)[J]. Mater. Sci. Eng., A. 2011, (528): 5999
[4] Song Z Y, Sun Q Y, Xiao L, Sun J, Zhang L C.Precipitation behavior and tensile property of the stress-agedTi-10Mo-8V-1Fe-3.5Al alloy[J]. Mater. Sci. Eng., A. 2011, (528): 4111
[5] So?ek ? A, Krawczyk J.The analysis of the hot deformation behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness[J]. Mater. Des. 2015, (65): 165
[6] Hua K, Li J S, Kou H C, et al.Phase precipitation behavior during isothermal deformation inβ-quenched near beta titanium alloy Ti-7333[J]. J. Alloys Compd., 2016, (671): 381
[7] Santos P F, Niinomi M, Cho K, et al.Microstructures, mechanical properties and cytotoxicity of low cost betaTi-Mn alloys for biomedical applications[J]. Acta Biomater., 2015, (26): 366
[8] Fan J K, Li J S, Kou H C, et al.Influence of solutiontreatment on microstructure and mechanicalproperties of a nearβtitanium alloy Ti-7333[J]. Mater. Des., 2015, (83): 499
[9] Guo S, Zhang J S, Cheng X N, et al.A metastable β-type Ti-Nb binary alloy with low modulus and highstrength[J]. J. Alloys Compd., 2015, (644): 411
[10] Li L, Li M Q, Luo J.Mechanism in the b phase evolution during hot deformationof Ti-5Al-2Sn-2Zr-4Mo-4Cr with a transformed microstructure[J]. Acta Mater., 2015, (94): 36
[11] Cho K, Niinomi M, Nakai M, et al.Improvement in mechanical strength of low-cost β-type Ti-Mn alloysfabricated by metal injection molding through cold rolling[J]. J. Alloys Compd., 2016, (644): 272
[12] Dai S J, Wang Y, Chen F, et al.Effects of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications[J]. Mater. Sci. Eng., A. 2013, (575): 35
[13] Yi R W, Liu H Q, Yi D Q, et al.Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging[J]. Mater. Sci. Eng., C. 2016, (63): 577
[14] Li C L, Mi X J, Ye W J, et al.Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy[J]. Mater. Sci. Eng., A. 2015, (645): 225
[15] Xu T W, Zhang S S, Zhang F S, et al.Effect of ω-assistedprecipitationon β-α transformationandtensile properties of Ti-15Mo-2.7Nb-3Al-0.2Si alloy[J]. Mater. Sci. Eng., A. 2016, (654): 249
[16] Song L, Xu X J, You L, et al.Ordered ω phase transformations in Ti-45Al-8.5Nb-0.2B alloy[J]. Intermetallics., 2015, (65): 22
[17] Liu H H, Niinomi M, Nakai M, et al.Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O[J]. Acta Mater., 2016, (106): 162
[18] Zain Y A, Kim H Y, Koyano T, et al.A comparative study on the effects of the ω and α phases on the temperaturedependence of shape memory behavior of a Ti-27Nb alloy[J]. Scr. Mater., 2015, (103): 37
[19] Ng H P, Douguet E, Bettles C J, et al.Age-hardening behaviour of two metastable beta-titanium alloys[J]. Mater. Sci. Eng., A. 2010, (527): 701
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[3] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[4] WANG Pengyu, ZHANG Haoyu, ZHANG Zhipeng, SUN Jie, XIE Guangming, CHENG Jun, CHEN Lijia. Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn[J]. 材料研究学报, 2020, 34(6): 473-480.
[5] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[6] JIA Jianbo,LU Chao,YANG Zhigang,DONG Tiantian,GU Yongfei,XU Yan. Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy[J]. 材料研究学报, 2020, 34(3): 198-208.
[7] SHI Congyun,WANG Jinfeng,CHEN Hongxiang,YANG Xumeng,DU Changjun,LI Guangyao,LIU Peng,CAI Haohao. Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste[J]. 材料研究学报, 2020, 34(1): 57-63.
[8] Zhicheng WANG,Hao WANG,Hailiang HUANG,Benfu Hu. Effect of Ta on High Temperature Tensile Properties of Advanced Ni-based Powder Metallurgy Superalloys[J]. 材料研究学报, 2019, 33(5): 331-337.
[9] WU Xiyue,CHEN Zhiyong,CHENG Chao,LIU Jianrong,XU Dongsheng,WANG Qingjiang. Effects of Heat Treatment on Microstructure, Texture and Tensile Properties of Ti65 Alloy[J]. 材料研究学报, 2019, 33(10): 785-793.
[10] Jie WEI,Qudong WANG,Bing YE,Haiyan JIANG,Wenjiang DING. Effect of Heat Treatment on the Microstructure and Mechanical Property of Vacuum Die-casting NZ30K Mg-alloy[J]. 材料研究学报, 2019, 33(1): 1-8.
[11] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[12] Guoqiang WANG, Zibo ZHAO, Bingbing YU, Zhiyong CHEN, Qingjiang WANG, Rui YANG. Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246[J]. 材料研究学报, 2017, 31(5): 352-358.
[13] Miaomiao LI,Ping CHEN,Hui WANG,Jianchao LI. Preparation and Tensile-compressive Properties of Syntactic Foams of Epoxy Resin Filled with Fly Ash Cenospheres[J]. 材料研究学报, 2017, 31(2): 88-95.
[14] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[15] DENG Yunlai, WANG Yafeng, LIN Huaqiang, YE Lingying, LIU Shengdan, TAN Qian, ZHANG Xinming. Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy[J]. 材料研究学报, 2016, 30(2): 87-94.
No Suggested Reading articles found!