Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 168-174    DOI: 10.11901/1005.3093.2016.237
ARTICLES Current Issue | Archive | Adv Search |
Micro-morphology and Preferential Growth of ZrB2 Coating Prepared by Chemical Vapor Deposition
Jun ZHANG,Lei ZHANG,Guodong LI(),Xiang XIONG
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

Jun ZHANG,Lei ZHANG,Guodong LI,Xiang XIONG. Micro-morphology and Preferential Growth of ZrB2 Coating Prepared by Chemical Vapor Deposition. Chinese Journal of Materials Research, 2017, 31(3): 168-174.

Download:  HTML  PDF(1040KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZrB2 coating was deposited on graphite by chemical vapor deposition with ZrCl4-BCl3-H2-Ar as reaction ingredient at different temperatures, which then was characterized by means of X-ray diffractometer and scanning electron microscopy (SEM). The results show that the formation of ZrB2 coating on graphite follows a mode of nucleation of ZrB2 first, which grow as islets and then further grow and merger each other forming a complete film. The growing and merging of islets resulted in that a large number of holes existed in the coating side near the boundary ZrB2 coating / graphite substrate, and thereby formed the fine grain zone there. In the initial deposition stage at 1300℃ to 1600℃, the primary grains of ZrB2 coalesced to become secondary grains with preferential orientation <111>. As the deposition processed, the secondary grains changed to the plate-shaped grains. The plate-shaped grains transformed into the pyramid shaped ones with further growing, and the inner part of the coating turned to be dense columnar grains. Meanwhile the preferred orientation of the grains changed from <111> to <100>. When the edge of the pyramid shaped crystal grains passivated, the grains inside the coating transformed to equiaxed ones and correspondingly their preferred orientation changed from <100> to <101>.

Key words:  surface and interface in the materials      ZrB2 coating      chemical vapor deposition      micro morphology      orientation     
Received:  29 April 2016     
Fund: Supported by National Program on Key Basic Research Project of China (No.2011CB605805)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.237     OR     https://www.cjmr.org/EN/Y2017/V31/I3/168

Deposition rate/℃ Deposition pressure/Pa Deposition time/h Transfer rate/gmin-1 Volume flow rate/
mlmin-1
The ratio of B/Zr
ZrCl4 BCl3 H2 Ar
1300 5.0×103 2 0.9 200 600 400 2.312
1400 5.0×103 2 0.9 200 600 400 2.312
1500 5.0×103 2 0.9 200 600 400 2.312
1550 5.0×103 2 0.9 200 600 400 2.312
1600 5.0×103 2 0.9 200 600 400 2.312
Table1  Process parameters for CVD-ZrB2 coating
Fig.1  XRD pattern of coating deposited at different temperatures
Fig.2  ZrB2 texture coefficients as function of deposition temperatures
Fig.3  Surface morphologies of coatings prepared at different temperature

(a) 1300℃; (b) 1400℃; (c) 1500℃; (d) 1550℃; (f) 1600℃; (e) 1600℃

Fig.4  Fracture surface morphologies of coatings prepared at different temperature

(a) 1300℃; (b) 1400℃; (c) 1500℃; (d) 1550℃; (f) 1600℃

Fig.5  Nucleating diagram of vapor deposition
α Crystal Fastest growth direction
1.0 Cubic <111>
1.5 Cubic-octahedron <110>
3.0 Octahedron <100>
Ball-shaped particle Randomly direction
Table 2  Relationship between α value, grain morphology and preferential growth direction
[1] S. H. Jung, H.C. Oh, J. H. Kim, et al.Pretreatment of zirconium diboride powder to improve densification[J]. J. Alloys Compd., 2013, 548(1): 173
[2] Opeka M M, Talmy I G, Zaykoski J A, et al.Oxidation-based materials selection for 2000℃+hypersonic aero surfaces: theoretical considerations and historical experience[J]. Mater Sci., 2004, 39(19): 5887
[3] Fahrenholtz W G, Hilmas G E, Refractory diborides of zirconium and hafnium[J]. Am Ceram Soc., 2007, 90(5): 1347
[4] Parthasarathy T A, Rapp R A, Opeka M, et al.A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater., 2007, 55(17): 5999
[5] C. Q. Liu, K. Z. Lin, H. J. Li, et al.In situ synthesis mechanism of ZrB2-ZrC-C composites[J], Ceram. Int, 2014, 40(40): 10297
[6] X. Ren, H. J. Li, Y. H. Chu, et al., Preparation of oxidation protective ZrB2-SiC coating by in-situ reaction method on SiC-coated carbon/carbon composites[J]. Surf. Coat. Technol, 2014, 247(5): 61
[7] Zhao D, Zhang C R, Zhang Y D, et al., Reactive preparation and properties of ZrB2 coating[J]. J. Inorg Mater, 2011, 26(9): 903
[7] (赵丹, 张长瑞, 张玉娣等, 反应法制备硼化锆耐超高温涂层. 无机材料学报[J], 2011, 26(9): 903)
[8] H J Zhou, G Le, W Zhen, et al.ZrB2-SiC Oxidation Protective Coating on C/C Composites Prepared by Vapor Silicon Infiltration Process[J]. Am Ceram Soc, 2010, 93(4): 915
[9] X Zou, Q G Fu, L Liu,et al.ZrB2-SiC coating to protect carbon/carbon composites against ablation[J]. Surf. Coat. Technol, 2013, 226(14): 17
[10] X Yang, W Li, S Wang,et al., ZrB2 coating for the oxidation protection of carbon fiber reinforced silicon carbide matrix composites[J]. Vacuum, 2013, 96(10): 63
[11] Rupa P K P, Sharma P, Mohanty R M, et al. Microstructure and phase composition of composite coatings formed by plasma spraying of ZrO2 and B4C powders[J]. J. Therm. Spray. Technol, 2010,19(4): 816
[12] X Y Yao, H J Li, Y L Zhang,et al., Ablation behavior of ZrB2-based coating prepared by supersonic plasma spraying for SiC-Coated C/C composites under oxyacetylene[J]. J. Therm. Spay .Technol, 2013, 22(4): 531
[13] D J Li, M X Wang, J J Zhang, Structural and mechanical responses of (Zr, Al)N/ZrB2 superlattice coatings to elevated-temperature annealing[J]. Mater. Sci. Eng, 2006, 423(1): 116
[14] J L Deng, L F Cheng, G P Zheng, et al.Thermodynamic study on co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2-Ar system. Thin Solid Films, 2012, 520(23): 7030
[15] A Wang, G Male .Experimental system investigation of the Zr-B-Cl-H CVD[J]. J. Eur Ceram. Soc, 1993, 11(3): 241
[16] Chen Q Y, Liu S J, Physical Chemistry [M]. Beijing: Science Press, 2012
[16] (陈启元, 刘士军. 物理化学[M]. 北京:科学出版社,2012)
[17] Li G D, Xiong X, Liu G, et al.Adjustable uniform powder feeder[P]. CHINA, 201010538190, 2010
[17] (李国栋, 熊翔, 刘岗等. 均匀可调送粉装置[P]. 中国, 201010538190, 2010)
[18] R. Y. Korotkov, P. Ricol, A. J. E.Farran. Preferred orientations in polycrystalline SnO2 films grown by atmospheric pressure chemical vapor deposition[J]. Thin Solid Films, 2006, 502(1): 79
[19] Chen Q Y, Liu Z J.Physical Chemistry [M]. Beijing, Science Press, 2012)
[19] (陈启元, 刘士军. 物理化学[M]. 北京:科学出版社,2012)
[20] K. L. Bjorklund, J. Lu, P. Heszler, et al., Kinetics, thermodynamics and microstructure of tungsten rods grown by thermal laser CVD[J]. Thin Solid Films, 2002, 416(1): 41
[21] P. Smereka, X. Q. Li, G. Russo, et al, Simulation of faceted film growth in three dimensions: Microstructure, morphology and texture[J]. Acta Mater, 2005, 53(4): 1191
[22] E. S Machlin., Materials science in microelectronics[M]. New York: Giro Press, 1995
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[11] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
No Suggested Reading articles found!