Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 182-186    DOI: 10.11901/1005.3093.2016.235
ARTICLES Current Issue | Archive | Adv Search |
Compression Performance and Failure Mechanism of C/C-Cu Composites
Chaoyong DENG1,Hongbo ZHANG1,Jian YIN1(),Xiang XIONG1,Pei WANG1,Miao SUN1,Wanqian LI2
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Material Science and Engineering School, Central South University of Forestry and Technology, Changsha 410004, China
Cite this article: 

Chaoyong DENG,Hongbo ZHANG,Jian YIN,Xiang XIONG,Pei WANG,Miao SUN,Wanqian LI. Compression Performance and Failure Mechanism of C/C-Cu Composites. Chinese Journal of Materials Research, 2017, 31(3): 182-186.

Download:  HTML  PDF(832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three composites of C/C-Cu i.e. carbon fiber reinforced carbon-copper mesh with different volume fraction (35%,40% and 45%) of carbon fiber were prepared by pressing mold method and then followed by four times impregnating with resin and three times high temperature carbonizing . Their compressive properties were measured on Instron-3369 mechanical testing machine. The effect of volume fraction of carbon fiber on the compressive property was investigated. The results show that the compression performance of C/C-Cu composites increased with increase of volume fraction of carbon fiber in the vertical direction. The compression strength of the composite with 40% carbon fiber was 20% higher than the one with 35%, and that with 45% carbon fiber was 13% higher than the one with 40%. These imply claerly that the compression strength of the composites first increased and then decreased with the increasing carbon fiber content. On the other hand, the carbon fiber volume fraction has no significant effect on the compression performance in the parallel direction. Among others, the composite with 45% carbon fiber has the best compression strength in both the vertical direction and parallel direction, i.e. 190.13MPa and 83.39MPa respectively. The difference of compressive strength in the vertical direction and parallel direction shows that the compression property of C/C-Cu composites was obviously of anisotropy. By compression stress the composite damaged in the vertical direction along 45°diagonal and in the parallel direction at the interface between the carbon fiber and copper mesh.

Key words:  C/C-Cu composites      compressive properties      anisotropy      failure mechanism     
Received:  29 April 2016     
Fund: Supported by National Natural Science Foundation of China (No.51302322) and Hunan Provincial Department of Education Youth Fund Project (No.14C1187)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.235     OR     https://www.cjmr.org/EN/Y2017/V31/I3/182

Fig.1  Schematic description of loading modes
Sample Cf
/v%
Cu
/%
Density
/(gcm-3)
Porosity
/%
CFRCS-1 35.09 21.19 1.92 3.4
CFRCS-2 40.38 21.49 1.86 4.4
CFRCS-3 45.55 21.01 1.96 3.7
Table 1  Basic properties of C/C-Cu composites
Fig.2  Compressive strength of C/C-Cu composites
Fig.3  Compressive stress-strain curves of C/C-Cu composites (a: vertical direction; b: parallel direction)
Fig.4  Micrographs of fractured surfaces of C/C-Cu composites (a, b: parallel direction; c, d: vertical direction)
Fig.5  Macrographs of fractured of C/C-Cu composites (a: parallel direction; b: vertical direction)
Fig.6  Schematic description of compressive stress distribution (a: parallel direction; b: vertical direction)
[1] Froidh O.Perspectives for a future high-speed train in the Swedish domestic travel market[J]. Journal of Transport Geography, 2008, 16(4): 268
[2] Kubo S, Kato K.Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear, 1998, 216(2): 172
[3] Yu Z P, Zhang H, Wu H B, et al.A Study on highspeed catenary-pantograph system[J]. China Railway Science, 1999, 20(1): 59
[3] (于正平, 张弘, 吴鸿标等.高速电气化铁路接触网-受电弓系统的研究[J]. 中国铁道科学, 1999, 20(1): 59)
[4] Tan C.Research on preparation, microstructure and properties of carbon/carbon-copper composites[D]. Changsha: Central South University, 2013
[4] (谭翠. 炭/炭-铜复合材料的制备及其结构与性能研究[D]. 长沙: 中南大学, 2013)
[5] Wang W F, Xiu S F, Ying M F, et al.Study on the microstructure and properties of copper-coated graphite/Cu matrix composite material[J]. Materials for Mechanical Engineering, 1999, 23(2): 41
[5] (王文芳, 许少凡, 应美芳等. 用镀铜石墨粉制备铜-石墨复合材料[J]. 机械工程材料, 1999, 23(2): 41)
[6] Kestursatya M, Kim J K, Rohatgi P k. Wear performance of copper graphite composite and a leaded copper alloy[J]. Materials Science & Engineering A, 2003, 339(1-2): 150
[7] Kubota Y, Nagasaka S, Miyauchi T, et al.Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current[J]. Wear, 2013, 302(s1-2): 1492
[8] Yang L, Ran L P, Yi M Z.Carbon fiber knitted fabric reinforced copper composite for sliding contact material[J]. Materials & Design, 2011, 32(4): 2365
[9] Yin J, Zhang H B, Xiong X, et al.Effect of porous C/C substrate density on compressive property of C/C-Cu composites[J]. Powder Metallurgy Materials Science and Engineering, 2014, 19(6): 989
[9] (尹健, 张红波, 熊翔等. 多孔体密度对C/C-Cu复合材料压缩性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(6): 989)
[10] Xiong X, Huang B Y, Xiao P.Compressive properties and fracture mechanism of quasi-3D C/C composites[J]. J. Central South University (Science and Technology), 2004, 35(5): 702
[10] (熊翔, ,黄伯云, 肖鹏等. 准三维C/C复合材料的压缩性能及其破坏机理[J]. 中南大学学报(自然科学版), 2004, 35(5): 702)
[11] Huang B Y.Manufacturing of Carbon/carbon Composites for Aircraft Brakes[M]. Hunan: Science and Technology Press, 2007
[11] (黄伯云. 高性能炭/炭航空制动材料的制备技术[M]. 湖南: 科学技术出版社, 2007)
[1] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[2] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[3] LIU Yu, LIANG Zhiqi, ZHAO Song, CHANG Chunrui. Experiment and First-principles Calculation on Effect of Carbon Nanotubes Doping on Physical Parameters and Display Properties of Liquid Crystal[J]. 材料研究学报, 2022, 36(6): 425-434.
[4] DIAO Wei, DU Lei, WANG Yanbo, ZHOU Haitao, SUN Jingli. Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting[J]. 材料研究学报, 2022, 36(3): 231-240.
[5] PAN Yun, LIU Tiancheng, LI Guangmin, DAI Baiyang, LV Na, ZHANG Wei, TANG Dongdong. Effect of Tension Annealing Induced-anisotropy on Magnetic Properties of Nanocrystalline Alloy[J]. 材料研究学报, 2020, 34(10): 753-760.
[6] Tuo YE,Yuanzhi WU,Anmin LIU,Xu TANG,Luoxing LI. Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading[J]. 材料研究学报, 2019, 33(2): 109-116.
[7] Wenyuan LI, Jianrong LIU, Zhiyong CHEN, Zibo ZHAO, Qingjiang WANG. Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate[J]. 材料研究学报, 2018, 32(6): 455-463.
[8] Fang YU, Daofen XU, Songyi CHEN, Kanghua CHEN, Xifeng WANG, Debo LIU, Yunlong MA, Cheng HUANG, Dongyang YAN. Effect of Cu Content on Anisotropy of Mechanical Property of Al-Cu-Mn Alloy[J]. 材料研究学报, 2018, 32(11): 853-860.
[9] Zhaoqing LU, Zhiping SU, Meiyun ZHANG, Yang HAO. Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber[J]. 材料研究学报, 2017, 31(8): 597-602.
[10] Miaomiao LI,Ping CHEN,Hui WANG,Jianchao LI. Preparation and Tensile-compressive Properties of Syntactic Foams of Epoxy Resin Filled with Fly Ash Cenospheres[J]. 材料研究学报, 2017, 31(2): 88-95.
[11] Xiaoyuan PEI,Bo SHANG,Jialu LI,Li CHEN,Gang DING. Shear Properties of Resin Composites Reinforced with Multilayer-connected Biaxial Weft Knitted Fabric of Carbon Fibers[J]. 材料研究学报, 2015, 29(8): 613-621.
[12] Jianjun WANG,Chong GAO,Chunming LIU. Influence of Composition of Ru-Cr Buffer Layers on Crystal Structure and Magnetic Property of Co-W Magnetic Films[J]. 材料研究学报, 2014, 28(7): 515-520.
[13] CONG Fuguan, ZHAO Gang, TIAN Ni, LI Ruifeng. Inhomogeneity of Properties of 7150-T7751 Aluminum Alloy Thick Plate[J]. 材料研究学报, 2013, 27(2): 144-148.
[14] WU Zhangbin GUI Liangjin FAN Zijie. The Mechanical Properties of Extruded AZ31B Magnesium Alloy Sheets[J]. 材料研究学报, 2012, 26(2): 218-224.
[15] MENG Jie JIN SUN Xiaofeng HU Zhuangqi. Compression Deformation of a Nickel-Base Single Crystal Superalloy of Different Orientations[J]. 材料研究学报, 2011, 25(4): 355-361.
No Suggested Reading articles found!