Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 233-240    DOI: 10.11901/1005.3093.2016.200
ARTICLES Current Issue | Archive | Adv Search |
Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block
Qingsheng LIU1(),Zhenming XU2,Weidong TANG3
1 Falculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 College of Metallurgical and Environmental Engineering, Central South University, Changsha 410083, China 3 School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

Qingsheng LIU,Zhenming XU,Weidong TANG. Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block. Chinese Journal of Materials Research, 2017, 31(3): 233-240.

Download:  HTML  PDF(1498KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sodium erosion has become a major factor affecting the durability of electrolytic cathode carbon block, therefore it is of significance to study the diffusion process of sodium in carbon block. In general, the carbon block can be considered as a multi-phase composite with carbon as aggregate and asphalt as binder, thus the sodium diffusion process might relate closely to the microscopic structure of the carbon block. First, seven microstructure models of cathode carbon block could be established by means of software Matlab in consideration of the different particle distribution and the amount of the carbon aggregate of various shapes such as circle, ellipse and polygon, and then which were through igs model file format introduced into ANSYS to establish a two-dimensional finite element numerical model. The ANSYS thermal analysis unit was used to simulate sodium diffusion process which based on the similarity of diffusion equation and the heat conduction equation, and analyzed the influence the size distribution, the amount and the shape of the carbon aggregate on the sodium diffusion process. The results show that the carbon aggregate shows stronger barrier effect to the sodium diffusion rather than the asphalt. For the carbon block with narrower range of the particle size distribution, lower roundness of the aggregate particles and higher amount of the aggregate, the sodium diffusion rate is slow down over time. The sodium diffusion rate is the slowest for the carbon block with 80% circular aggregate and the aggregate size distribution within a range 0.003~0.006 m. Furthermore, the above simulation results agree fairly well with experimental ones which proved the accuracy and reliability of the simulation.

Key words:  inorganic non-metallic materials      sodium diffusion      finite element simulation      cathode carbon block      aggregate     
Received:  13 April 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51264011 & 51564019)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.200     OR     https://www.cjmr.org/EN/Y2017/V31/I3/233

Heat conduction Heat flow density Coefficient of thermal conductivity Temperature Heat
J/(m2s) J/(m·K·s) K J
Sodium diffusion Sodium diffusion flux Diffusion coefficient of sodium Concentration of sodium Sodium
kg/(m2s) m2/s kg/m3 Kg
Table 1  Unit comparision of heat transfer and sodium diffusion calculation quantity
Number Shape Filling ratio Diameter of grading
1 circle 70% 0.003~0.006 m
2 circle 70% 0.003~0.009 m
3 circle 70% 0.003~0.015 m
4 circle 60% 0.003~0.009 m
5 circle 80% 0.003~0.009 m
6 polygon 70% 0.003~0.009 m
7 ellipse 70% 0.003~0.009 m
Table 2  Control parameters of different aggregate model
Fig.1  Geometry model of stochastic aggregates

(a) circle; (b) ellipse; (c) polygon

Fig.2  Diffusion geometry model of sodium in round cathode carbon block and the grid

(a) diffusion model;(b) grid

Aggregate (anthracite) Adhesive (bitumen)
Density 1940 kg/m3 1200 kg/m3
Diffusion coefficient
of sodium
8.9×10-9 m2/s 9.7×10-8 m2/s
Table 3  Material properties of cathode carbon block
Fig.3  Sodium concentration distribution cloud of different aggregate model (a) circle; (b) ellipse; (c) polygon
Fig.4  Roundness of aggregate
Fig.5  Sodium concentration-time curve of aggregate model center of different shapes
Fig.6  Sodium concentration cloud of aggregate model of different gradation (a) 0.003~0.006 m; (b) 0.003~0.009 m; (c) 0.003~0.015 m
Fig.7  Sodium concentration-time curve of aggregate model center of different gradation
Fig.8  Sodium concentration distribution cloud of different aggregate particles (a) 60%; (b) 70%; (c) 80%
Fig.9  Sodium attentiveness - time curvature of different aggregate particles
Fig.10  Schematic diagram of the formation of aluminum electrolysis
Fig.11  SEM images of cathode carbon block sodium diffusion of different time

(a) 1800 s; (b) 3600 s

Fig.12  Numerical simulation of sodium concentration distribution for blocks of different time (a) 1800 s; (b) 3600 s
Fig.13  Contrast curve of numerical calculation and actual experimental of carbon block sodium diffusion
[1] Wang Y, Tie J, Sun S, et al.Simulation method based on equivalent circuit to investigate the circuit characteristics in aluminum reduction cell[J]. Trans. Indian Inst. Met., 2015, 68(3): 443
[1] [2 ]Tsch?pe K, Sch?ning C, Rutlin J, et al. Chemical degradation of cathode linings in Hall-Héroult cells - an autopsy study of three spent pot linings[J]. Metall. Mater. Trans., 2012, 43B: 290
[3] Vasshaug K, Foosn?s T, Haarberg G M, et al.Formation and dissolution of aluminium carbide in cathode blocks[A]. Light Metals 2009[M]. The Minerals, Metals & Materials Society (TMS), 2009: 1111
[4] Allard F, Soucy G, Rivoaland L.Formation of deposits on the cathode surface of aluminum electrolysis cells[J]. Metall. Mater. Trans., 2014, 45B: 2475
[5] Lossius L P, ?ye H A.Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes[J]. Metall. Mater. Trans., 2000, 31B: 1213
[6] Kunihiro, Hideki etc. First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources, 2013, 243:585
[7] Brissona P Y, Darmstadtb H, Fafardc M, et al.X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells[J]. Carbon, 2006, 44(8): 1438
[8] Lorentz Petter Lossius, Harald A.?ye. Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes[J]. Metallurgical and Materials Transactions B, 2000, 31(6): 1213
[9] Zhou X G, Li K F.Simulation analysis of chloride penetration in concrete with finite volume method[J]. Engineering mechanics, 2013, 7: 34
[9] (周新刚, 李克非. 氯离子在混凝土中扩散传输的有限体积法模拟分析[J]. 工程力学, 2013, 7: 34)
[10] Zolochevsky A, Hop J G, Foosnaes T, ?ye H A. Rapoport-Samoilenko test for cathode materials-II swelling with external pressure and effect of creep[J]. Carbon 2005, 43: 1222
[11] Wang L C, Bao J W.Meso scale model of moisture transfer in cracking concrete[J]. Journal of Building Materials, 2014, 17(6): 972
[11] (王立成, 鲍玖文. 开裂混凝土中水分传输过程的细观模型[J]. 建筑材料学报, 2014, 17(6): 972)
[12] Xiao J Z, Lu D, Ma Z M.Mesoscopic numerical simulation on chloride diffusion in concrete with random distributed recycled coarse aggregate[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2014, 44: 1240
[12] (肖建庄, 卢登, 马志鸣. 考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟[J]. 东南大学学报(自然科学版), 2014, 44: 1240)
[13] Xiao J Z, Lu D, Ma Z M. Meso scale numerical simulation of chloride diffusion in concrete considering random distribution of recycled coarse aggregate[J].
[13] (肖建庄, 卢登, 马志鸣. 考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟[J]. 东南大学学报, 2014, 44(6): 1240)
[14] S?rlie M, ?ye H A.Cathodes in aluminium electrolysis, 2nd. Dusseldorf: Aluminium-Verlag, 1994. Journal of Southeast University,2014, 44(6)
[15] Chauke1 L, Garbers-Craig A M. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon, 2013, 58: 40
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!