Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 65-73    DOI: 10.11901/1005.3093.2016.118
Orginal Article Current Issue | Archive | Adv Search |
Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels
Lei LEI1,2,4,Yilong LIANG1,2,4(),Yun JIANG1,2,3,Jun XU1,2,4,Ming YANG1,2,4
1 College of Materials and Metallurgy,University of Guizhou,Guiyang 550025,China
2 Key Laboratory for Material Structure and Strength of Guizhou Province,Guiyang 550025,China
3 College of Mechanical Engineering,University of Guizhou,Guiyang 550025,China
4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology,Guiyang 550025,China
Cite this article: 

Lei LEI,Yilong LIANG,Yun JIANG,Jun XU,Ming YANG. Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels. Chinese Journal of Materials Research, 2017, 31(1): 65-73.

Download:  HTML  PDF(6588KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of quench with two quenching media of 13% polyaleneglycol (PAG) and oil respectively on the high cycle fatigue behavior of spring steel 60Si2CrVAT was studied by applying alternatively uniaxial tension and compression. While the fatigue fractograph,source composition,microstructural evolution of the steel were examined by means of SEM,TEM and EBSD. The results indicate that the fatigue limit for the steel quenched with 13%PAG is 781.5 MPa; however that with oil is 714.0 MPa. Analysis results of fractograph show that fatigue damages mostly originate from the internal inclusions and carbides,while granular bright facets (GBF) are observed in the vicinity around the inclusions. Further investigation indicates that the stress intensity factor range at crack initiation site of inclusion ?Kinc trends to decrease gradually with increasing the fatigue life Nf,while the stress factor range at GBF boundary ?KGBF keeps almost constant with varying Nf and the ?KGBF for the steel quenched with oil is smaller than that with 13% PAG. From microstructural observation results,it suggests that the beneficial effect on the fatigue property of the steel quenched with 13%PAG is caused by that there existed much more nano-twins,much finer individual lath and block,as well as finer carbides uniformly distributed in martensitic matrix for the steel quenched with 13% PAG rather than those with oil.

Key words:  metallic materials      60Si2CrVAT spring steels      quench rate      high cycle fatigue      inclusion      microstructure     
Received:  07 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51461006), Guiyang Science and Technology Support Program (No.2013101) and Key Projects in Guizhou Province (No.20146012) and Key Projects in Guizhou Province (No.JZ[2014]2003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.118     OR     https://www.cjmr.org/EN/Y2017/V31/I1/65

C Si Cr Mn V Cu P S Fe
0.59 1.61 1.15 0.66 0.16 0.014 0.009 0.015 Bal.
Table 1  Chemical composition of the tested steel(mass fraction, %)
Fig.1  Geometry of the fatigue test specimen (unit: mm)
Fig.2  The cooling property of different quenching medium
Fig.3  The tensile stress-strain curves of different quenching medium
Fig.4  The fatigue limit of 60Si2CrVAT spring steel quenched by 13% PAG (a), and quenched by oil (b), and the S-N curveof60Si2CrVAT spring steel quenched by 13%PAG (c), and quenched by oil (d)
Qunchant Rp0.2/MPa Rm/MPa A/% Z/% HRC
13%PAG 1738.90 1909.42 8.52 20.87 52.30
Oil 1643.57 1842.44 6.60 16.88 46.50
Table2  The mechanical properties of two kinds of quenching medium
Fig.5  SEM fractographs of 13%PAG showing a“fish-eye” with an inclusion in the fish-eye center (a), a GBF (granular bright facet)surrounding the inclusion (b), and its high-reservation (c), and energy spectrum of the inclusion (d) (σ=770 MPa, Nf=1.585×106 cycle)
Fig.6  SEM fractographs of oil showing a“fish-eye” with an inclusion in the fish-eye center (a), a GBF (granular bright facet) surrounding the inclusion (b), and its high-reservation (c), and energy spectrum of the inclusion (d) (σ=730 MPa, Nf=9.9577×106)
Fig.7  Relationship between stress intensity factor range at the inclusion of Kinc and Nf, showing an increasing tendency of Nf with the decreasing of Kinc(a), and ?KGBF at the GBF at the fracture source and Nf, showing an almost independence tendency of Nf with ?KGBF(b)
Fig.8  EBSD images of microstructure of 13%PAG and oil (b)
Fig.9  TEM images of lath martensite microstructures of 13%PAG (a), oil (b), and the twinning structure of 13%PAG (c)
Fig.10  TEM morphology and distribution of carbide of 13%PAG (a), (b), and oil (c)
Fig.11  The fatigue strip of 13%PAG (σ=770 MPa, Nf=1.585×106) (a) and oil (σ=730 MPa, Nf=9.9577×106) (b)
[1] Fu S H, Hui W J, Liu Z H, et al.Fatigue fracture behaviour of a medium-carbon 2000 MPa level high strength spring steel[J]. J. Iron Steel Res., 2006, 18: 30
[1] (付书红, 惠卫军, 刘中华等. 一种2000 MPa级中碳高强度弹簧钢的疲劳破坏行为[J]. 钢铁研究学报, 2006, 18: 30)
[2] Zhao H M, Hui W J, Nie Y H, et al.Very high cycle fatigue fracture behavior of high strength spring steel 60Si2CrVA[J]. Chin. J. Mater. Res., 2008, 22: 526
[2] (赵海民, 惠卫军, 聂义宏等. 60Si2CrVA高强度弹簧钢的超高周疲劳破坏行为[J]. 材料研究学报, 2008, 22: 526)
[3] Wang K, Yin J, Gu W J, et al.Effect of heat treatment on structure and mechanical properties of spring steel 60Si2CrVAT[J]. Spec. Steel, 2007, 28: 56
[3] (王凯, 殷匠, 顾文俊等. 热处理对60Si2CrVAT弹簧钢组织和力学性能的影响[J]. 特殊钢, 2007, 28: 56)
[4] Li Q Z, Gao G H, Zhou L X, et al.A test for optimization of heat treatment process of high strength spring steel 60Si2CrVAT[J]. Spec. Steel, 2012, 33: 49
[4] (李秋志, 高国华, 周立新等. 高强度弹簧钢60Si2CrVAT热处理工艺优化试验[J]. 特殊钢, 2012, 33: 49)
[5] Wu H L, Wang F M, Li C R, et al.Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains[J]. Trans. Mater. Heat Treat., 2011, 32: 35
[5] (吴华林, 王福明, 李长荣等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化[J]. 材料热处理学报, 2011, 32: 35)
[6] Li X Q, Zhang Y X, Guo J P.Study on the quenching of spring steels used polyglycol solution[J]. Heat Treat. Metals, 1992, (11): 3
[6] (黎秀球, 张亚信, 郭建平. 新型淬火介质在弹簧钢热处理中的应用研究[J]. 金属热处理, 1992, (11): 3)
[7] Meng X Y, Qin L F.Application of PAG in heat treatment for 50CrVA leaf spring[J]. Hot Work. Technol., 2012, 41: 187
[7] (孟宪芸, 秦立富. PAG在50CrVA钢板弹簧热处理中的应用[J]. 热加工工艺, 2012, 41: 187)
[8] Ma M T.The effect of PAG on the property of spring steel[J]. Autom. Technol. Mater., 1995, (2): 13
[8] (马鸣图. PAG类淬火介质对弹簧钢性能的影响[J]. 汽车工艺与材料, 1995, (2): 13)
[9] Fan J L, Guo X L, Wu C W, et al.Effect of heat treatments on fatigue properties of FV520B steel using infrared thermography[J]. Chin. J. Mater. Res., 2012, 26: 61
[9] (樊俊铃, 郭杏林, 吴承伟等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26: 61)
[10] Murakami Y, Nomoto T, Ueda T, et al.On the mechanism of fatigue failure in the super-long life regime (N > 107 cycles). Part 1: influence of hydrogen trapped by inclusions[J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 893
[11] Tanaka K, Akiniwa Y.Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 775
[12] Lu L T, Shiozawa K, Morii Y, et al.Fatigue fracture process of a high-carbon-chromium bearing steel in ultra-long life regime[J]. Acta. Metall. Sin., 2005, 41: 1066
[12] (鲁连涛, 盐泽和章, 森井佑一等. 高碳铬轴承钢超长寿命疲劳破坏过程的研究[J]. 金属学报, 2005, 41: 1066)
[13] Murakami Y, Kodama S, Konuma S.Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. Int. J. Fatigue, 1989, 11: 291
[14] Sakai T, Sato Y, Oguma N.Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 765
[15] Zhang J M, Yang Z G, Li S X, et al.Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiV6 and 54SiCr6[J]. Acta. Metall. Sin., 2006, 42: 259
[15] (张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42: 259)
[16] Nie Y H, Hui W J, Fu W T, et al.Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta. Metall. Sin., 2007, 43: 1031
[16] (聂义宏, 惠卫军, 傅万堂等. 中碳强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43: 1031)
[17] Zhang Y J, Hui W J, Xiang J Z, et al.Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta. Metall. Sin., 2009, 45: 880
[17] (张永健, 惠卫军, 项金钟等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45: 880)
[18] Hong Y S, Fang B.Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Adv. Mech., 1993, 23: 468
[18] (洪友士, 方飚. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展, 1993, 23: 468)
[19] Wang X S, Liang F, Zeng Y P, et al.SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel[J]. Acta. Metall. Sin., 2005, 41: 1272
[19] (王习术, 梁锋, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41: 1272)
[20] Stormvinter A, Hedstr?m P, Borgenstam A.A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels[J]. J. Mater. Sci. Technol., 2013, 29: 373
[21] Tomita Y, Okabayashi K.Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels[J]. Metall. Trans. A, 1987, 18: 115
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!