Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 41-48    DOI: 10.11901/1005.3093.2016.035
Orginal Article Current Issue | Archive | Adv Search |
Effects of Crystallinity on Degradation Properties of Polyethylene by Thermo-oxidation Aging
Jun DAI1,Hua YAN1(),Junjun GUO2,Lianyong SANG1,Xuemei WANG1
1 Department of Chemistry and Material Engineering, Logistics Engineering University, Chongqing 401331, China
2 Unit 73801, Wuxi 214000, China
Cite this article: 

Jun DAI,Hua YAN,Junjun GUO,Lianyong SANG,Xuemei WANG. Effects of Crystallinity on Degradation Properties of Polyethylene by Thermo-oxidation Aging. Chinese Journal of Materials Research, 2017, 31(1): 41-48.

Download:  HTML  PDF(1199KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The degradation performance of polyethylene(PE) induced by artificial thermo-oxidation aging at 80℃ was characterized as a function of its crystallinity in terms of the variation of tensile strength, tensile modulus, impact strength and chromatic aberration. The variations of carbonyl index, hydroxyl index, chain scission and crystallinity of the three as prepared PE with different crystallinities were comparatively examined by attenuated total reflection infrared spectroscopy (ATR-FTIR). The results show that during thermo-oxidation aging at 80℃, the PE with higher degree of crystallinity experiences significant decrease of tensile property, slow decrease of impact property and faster increase of chromatic aberration. The higher the crystallinity, the molecular chains of the PE prone to breakage in the early aging stage, but its oxidation is more noticeable during the later aging stage. The crystallinity of the PE with different crystallinities trands essentially unchanged after the first rise throughout the aging cycle. But the thermo oxidation-aging has greater influence on the crystallinity,which increases significantly for the PE with lower crystallinity.

Key words:  organic polymer materials      crystallinity      polyethylene      thermo-oxidation aging      ATR-FTIR     
Received:  06 January 2016     
Fund: Supported by Graduate Scientific Research and Innovation Foundation of Chongqing (No.CYS16239)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.035     OR     https://www.cjmr.org/EN/Y2017/V31/I1/41

Fig.1  Strain-stress curves of different degree of crystallinity in the PE for different aging time (a) 73%;(b) 67%;(c) 57%
Fig.2  Variations of mechanical property of different degree of crystallinity in the PE for different aging time (a) tensile strength;(b) tensile modulus; (c) impact strength
Fig.3  Variations of chromatic aberration values L and E of different degree of crystallinity in the PE for different aging time
Fig.4  FTIR spectra of different crystallinity PE at different aging times (a) 57%;(b) 67%;(c) 73%
Aging behavior Vibration frequency / cm-1 Vibration mode Functional group
Oxidation 1040 C—OH stretching vibration Oxidation
1714 C═O stretching vibration —CH2-CO-CH2
3400 —OH stretching vibration Hydroxyl index
Chain breaking 1635 C═C stretching vibration R1HC═CR2R3
1650 C═C stretching vibration RCH═CHR
Table 1  Studies on feature peaks of degradation of PE
Fig.5  Characteristic peaks, carbonyl index & hydroxyl index growth rate of different crystallinity at different aging times
Fig.6  Simulation of the chain session feature group for a Lorentzian distribution
Fig.7  Changes of absorbance of chain scission peaks at different aging times (a) 1650 cm-1;(b) 1590 cm-1
Fig.8  Changes of crystallinity at different aging times
[1] Baek B K, La Y H, Na W J, et al.A kinetic study on the supercritical decrosslinking reaction of silane-crosslinked polyethylene in a continuous process[J]. Polym. Degrad. Stabil., 2016, 126(1): 75
[2] Sugimoto M, Shimada A, Kudoh H, et al.Product analysis for polyethylene degradation by radiation and thermal ageing[J]. Radiat. Phys. Chem., 2013, 82(3): 69
[3] Yang S, Yang S P, Chen F.Quantitative analysis of the relationship between short branched chain and crystallinity in polyethylene[J]. Mod. Plast. Proc. Appl., 2006, 18(2): 33)
[3] (杨素, 杨苏平, 陈枫. 聚乙烯短支链与其结晶度关系的定量研究[J]. 现代塑料加工应用, 2006, 18(2): 33)
[4] Jiang Y T, Huang D P, Shao H F, et al.Effect of crystallinity on mechanics property of polybutene-1[J]. Mod. Plast. Proc. Appl., 2008, 20(1): 26)
[4] (江云涛, 黄佃平, 邵华锋等. 结晶度对聚丁烯-1力学性能的影响 [J].现代塑料加工应用 2008, 20(1): 26)
[5] Kupper L, Gulmine J, Janissek P, et al.Attenuated total reflection infrared spectroscopy for micro-domain analysis of polyethylene samples after accelerated ageing within weathering chambers[J]. Vib. Spectrosc., 2004, 34(1): 63
[6] Gauthier E, Laycock B, Cuoq F J, et al.Correlation between chain microstructural changes and embrittlement of LLDPE-based films during photo- and thermo-oxidative degradation[J]. Polym. Degrad. Stabil., 2013, 98(1): 425
[7] Yang R, Yu J, Liu Y, et al.Effects of coupling agents on the natural aging behavior and oxidation profile of high-density polyethylene/sericite composites[J]. J. Appl. Polym. Sci., 2008, 107(1): 610
[8] Carrasco F, Pages P, Pascual S, et al.Artificial aging of high-density polyethylene by ultraviolet irradiation[J]. Eur. Polym. J., 2001, 37(7): 1457
[9] Guo J J, Yan H, Hu Z D, et al.Adaptive behaviour to environment of HDPE by principal component analysis[J]. J. Mate. Eng.,2015, 43(1): 96
[9] (郭骏骏, 晏华, 胡志德等. 基于主成分分析的高密度聚乙烯环境适应性行为研究[J]. 材料工程, 2015, 43(1): 96)
[10] Klemens G, Susanne B, Gernot M, et al.Characterization of the influence of specimen thickness on the aging behavior of a polypropylene based model compound[J]. Polym. Degrad. Stabil., 2015, 111(1): 185
[11] Cheng J, Pan Y, Yao J, et al.Mechanisms and kinetics studies on the thermal decomposition of micron Poly (methyl methacrylate) and polystyrene[J]. J. Loss Prevent. Proc., 2016, 40(1): 139
[12] Zerbi G, Gallino G, De N F, et al.Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy[J]. Polymer, 1989, 30(12): 2324
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!