Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (9): 690-696    DOI: 10.11901/1005.3093.2015.695
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition
Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI
State Key Laboratory of Powder &Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition. Chinese Journal of Materials Research, 2016, 30(9): 690-696.

Download:  HTML  PDF(3212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

C-TaC coatings with different C contents (in mass fraction) were deposited on pure graphite by chemical vapor deposition technique with a gas mixture of TaCl5-Ar-C3H6. The tribological properties of the as-prepared coatings were characterized by multifunctional tribometer. The microstructures of the coatings and then the morphologies of the friction surface were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that the addition of an appropriate amount of Ta to a pure carbon coating can increase the content of sp2 bonds in the carbon coatings, and can improve the degree of graphitization of the carbon based coatings. When the mass fraction of C in the coatings was 86.4%, the coating show a nano composite structure with the pyrolytic carbon matrix embedded with nanometersized TaC crystallites and among others, which shows the smallest friction coefficient of 0.13. The wear mechanism may mainly concern with adhesive wear, fatigue wear and abrasive wear. By controlling the carbon content and the size of the crystallites in the coating, the friction coefficient of the coating can be adjusted effectively.

Key words:  composite materials      surface and interface in the materials      C-TaC composite coatings      chemical vapor deposition      microstructure      friction behavior     
Received:  02 December 2015     
Fund: *Supported by National Basic Research Program of China No 2011CB605805, Science and Technology Projects of Hunan Province No2015WK3013, and State Key Laboratory of Powder Metallurgy at Central South University

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.695     OR     https://www.cjmr.org/EN/Y2016/V30/I9/690

Deposition
temperature/℃
Deposition
pressure/Pa
Deposition time/h
950-1000 200 6
Deposition
position/mm
Volume flow rate/mLmin-1
Carrier gases Ar Dilute gases Ar C3H6
150-220 100-300 1200 600-1000
Table 1  Process parameters for preparation of C-TaC coatings by CVD
FC3H6/sccm D/nm C
(%, mass fraction)
TaC
(%, mass fraction)
600 38.6 72.0 28.0
800 12.2 86.4 13.6
1000 9.8 93.8 6.2
Table 2  Compositions of the prepared coatings deposited at different flow rates of C3H6 (FC3H6) and the calculated values of grain size of TaC
Fig.1  Cross-sectional SEM micrographs for TaC coating (a), and C-TaC coatings with 72% (b), 86.4% (c), 93.8% (d) carbon (mass fraction)
Fig.2  X-ray diffraction patterns for TaC coating (a), and C-TaC coatings with 72% (b), 86.4% (c), 93.8% (d) carbon (mass fraction)
Fig.3  XPS C1s spectra of the C-TaC coatings with C content of (a) 100% and (b) 86.4%
Fig.4  Friction coefficients of the as-prepared different coatings
Fig.5  Morphologies of the friction surfaces of TaC (a) and C-TaC coatings with 72.0% (b), 86.4% (c), 93.8% (d), 100.0% (f) carbon
[1] HUANG Boyun, XIONG Xiang, Manufacturing of Carbon/Carbon Composites for Aircraft Brakes (Changsha, Hunan Science and Technology Press, 2007) p.1
[1] (黄伯云, 熊翔, 高性能炭/炭航空制动材料的制备技术 (长沙, 湖南科学技术出版社, 2007) p.1)
[2] Nelson H. Forster, Lewis Rosado, Jeffrey R.Brown, Wei T. Shih, The development of carbon-carbon composite cages for rolling element bearings, Tribology Transactions, 45(1), 127(2002)
[3] Jeffrey R. Brown, Nelson H.Forster, Numerical investigation of the effect of carbon-carbon composite cages on high-speed bearing operating temperatures, 45(3), 411(2002)
[4] LIU Wen, Research on carbon-carbon composite cage, Doctoral Dissertation (Harbin, Harbin Institute of Technology, 2010)(刘闻, 碳碳复合材料保持架的研制, 博士学位论文(哈尔滨, 哈尔滨工业大学, 2010))
[5] Daniel Nilsson, Synthesis and evaluation of TaC: C low-friction coatings, Doctoral Dissertation, Uppsala University, (2004)
[6] Jansson Ulf, Lewin Erik, Sputter deposition of transition-metal carbide films-A critical review from a chemical perspective, Thin Solid Films, 536(6), 1(2013)
[7] Robertson J., Diamond-like amorphous carbon, Materials Science and Engineering R, 37(4-6), 129(2002)
[8] MA Fukang, QIU Xiangdong, JIA Housheng, LIU Guicai, Niobium and Tantalum (Changsha, Central South University Press, 1997) p.19(马福康, 邱向东, 贾厚生, 刘贵才, 铌与钽 (长沙, 中南大学出版社, 1997) p.19)
[9] WANG Qingliang, SUN Yanmin, ZHANG Lei, Tribological properties of diamond-like carbon films deposited by PECVD, Chinese Journal of Materials Research, 25(1), 73(2011)
[9] (王庆良, 孙彦敏, 张磊, PECVD法制备类金刚石薄膜的摩擦学性能, 材料研究学报, 25(1), 73(2011))
[10] K. Zhang, M. Wen, G. Cheng, X. Li, Q.N. Meng, J.S. Lian, W.T. Zheng, Reactive magnetron sputtering deposition and characterization of niobium carbide films, Vacuum, 99, 233(2014)
[11] DAI Mingjiang, FU Zhiqiang, LIN Songsheng, WANG Chengbiao, XIAO Xiaoling, Effect of frictional conditions on tribological performance of W-doped DLC films, Vacuum, 47(3), 1(2010)
[11] (代明江, 付志强, 林松盛, 王成彪, 肖晓玲, 摩擦条件对掺钨DLC膜摩擦磨损性能的影响, 真空, 47(3), 1(2010))
[12] ZHANG Wenyan, ZHANG Xuhai, FANG Feng, JIANG Jianqing, Microstructures and tribological properties of TiC/a-C films grown by magnetron sputtering, Chinese Journal of Vacuum Science and Technology, 29(3), 282(2008)
[12] (张文艳, 张旭海, 方峰, 蒋建清, 磁控溅射TiC/a-C薄膜的结构和摩擦学性能研究, 真空科学与技术学报, 29(3), 282(2008))
[13] K. Zhang, M. Wen, Q. N. Meng, Y. Zeng, C. Q. Hu, C. Liu, W. T. Zheng, Structure, mechanical property, and tribological behavior of c-NbN/CNx multilayers grown by magnetron sputtering, Surface and Coatings Technology, 206(19-20), 4040(2012)
[14] LI Yongqiu, Study on the deposition technology and the simulated experiment in spouted-bed at room-temperature, Master Thesis (Chengdu, Sichuan University, 2004)
[14] (李拥秋, 热解碳沉积工艺及冷态喷动模拟实验研究, 硕士学位论文(成都, 四川大学, 2004))
[15] LI Guodong, XIONG Xiang, HUANG Boyun, Effect of temperature on composition, surface morphology and microstructure of CVD-TaC coating, The Chinese Journal of Nonferrous Metals, 15(4), 565(2005)
[15] (李国栋, 熊翔, 黄伯云, 温度对CVD-TaC涂层组成、形貌与结构的影响, 中国有色金属学报, 15(4), 565(2005))
[16] D. L. Smith, Thin Film Deposition (New York, McGraw-Hill Inc., 1995) p.1
[17] E.O.Hall, The deformation and ageing of mild steel, Proceedings of the Physical Society, Section B, 64, 747(1951)
[18] J. Schiotz, F. D.Di Tolla, K. W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, 391(6667), 561(1998)
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
No Suggested Reading articles found!