Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 524-530    DOI: 10.11901/1005.3093.2015.684
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Microstructure of Chemical Modified Diatomite as Flame Retardant
WANG Yachao**(), ZHAO Jiangping
College of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi’an 710055, China
Cite this article: 

WANG Yachao, ZHAO Jiangping. Preparation and Microstructure of Chemical Modified Diatomite as Flame Retardant. Chinese Journal of Materials Research, 2016, 30(7): 524-530.

Download:  HTML  PDF(3372KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The diatomite based flame-retardant materials for external thermal insulation board of exterior wall were preparedby sol-gels method with NaOH (2 molL-1) and Na2SiO3 (1 molL-1) simultaneously as the chemical activator, and then characterized by means of various methods. Results showed that aftera thin-plastering of the prepared flame-retardant diatomitewas applied on expandable polystyrene board, the limiting oxygen indexthe complex EPSboard can reached 36.8%, and itscombustion performance can meetthe requirement of UL-94 V1. SEM results demonstrated that the NaOH and Na2SiO3 were benefit for the diatomite to form dense amorphous silica layer, XRD and FT-IR results showed that "depolymerization-reconstruction" of the diatomite structure occurred in the alkaline media, and which would further be reconstructed during firing.

Key words:  inorganic non-metallic materials      flame-retardant materials      diatomite      synergistic effects      microstructure     
Received:  27 November 2015     
Fund: *Supported by Doctor Foundation of Xi'an University of Architecture and Technology No RC1519

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.684     OR     https://www.cjmr.org/EN/Y2016/V30/I7/524

Raw material SiO2 Al2O3 Fe2O3 K2O CaO TiO2 Ignition loss
Diatomite 92.93 3.21 0.73 0.43 0.85 0.34 1.51
Table 1  Chemical composition of diatomite (%, mass fraction)
Fig.1  Mineral crystal phase of diatomite based materials
Samples NaOH/molL-1 Na2SiO3/molL-1 LOI/ % T1/s T2/s T3/s Melting drop UL-94
S0
S1
0
2
0
0
28.5
32.8
18
9
24
15
35
28
Yes
Yes
V2
V2
S2 3 0 33.5 8 13 25 No V1
S3 4 0 35.2 7 13 20 No V1
S4 5 0 35.5 6 12 18 No V1
S5 0 1 32.5 15 26 32 Yes V2
S6 0 1.5 33.9 13 20 26 No V1
S7 0 2 34.5 12 13 20 No V1
S8 0 2.5 34.7 11 12 16 No V1
S9 1 0.5 33.2 8 20 23 No V1
S10 1.5 0.75 34.8 8 18 18 No V1
S11 2 1 36.6 7 10 16 No V1
S12 2.5 1.25 36.8 7 9 15 No V1
Table 2  Flame-retardant performances of EPS covered samples
Fig.2  Chemical activation schematic diagram of diatomite
Fig.3  TG/DSC curves of specimens (a) activated with NaOH (CNa+=4 molL-1), (b) activated with Na2SiO3 and NaOH (CNa+=4 molL-1)
Fig.4  FT-IR spectra of diatomite and specimen (a) diatomite, (b) diatomite activated with Na2SiO3 and NaOH (CNa+=4 molL-1)
Fig.5  Morphologies of diatomite and materials (a)-diatomite; (b)-diatomite activated with 4 molL-1 NaOH; (c)- diatomite activated with 2 molL-1 Na2SiO3; (d) diatomite activated with NaOH and Na2SiO3 (CNa+= 4 molL-1)
Fig.6  Morphologies of samples after firing . (a)diatomite activated with 4 molL-1 NaOH; (b)diatomite activated with 2 molL-1 Na2SiO3; (c) diatomite activated with NaOH and Na2SiO3 (CNa+= 2 molL-1); (d) diatomite activated with NaOH and Na2SiO3 (CNa+= 4 molL-1)
1 H. Siska, L. Claire, P. Didier, L. Jose-Marie, G. Francois, Flame retardancy of silicone-based materials, Polym. Degrad. Stabil., 94, 465(2009)
doi: 10.1016/j.polymdegradstab.2008.11.019
2 B. Du, Z. Guo, P. Song, H. Liu, Z. Fang, Y. Wu, Flame retardant mechanism of organo-bentonite in polypropylene, Appl. Clay Sci., 45, 178(2009)
doi: 10.1016/j.clay.2009.05.003
3 P. Kiliaris, C.D. Papaspyrides,Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy, Prog. Polym. Sci., 35, 902(2010)
4 B. Wang, H. Sheng, Y. Shi, Recent advances for microencapsulation of flame retardant, Polym. Degrad. Stabil., 113, 96(2015)
doi: 10.1016/j.polymdegradstab.2015.01.008
5 D. Vesely, A. Kalendova, P. Kalenda, A study of diatomite and calcined kaoline properties in anticorrosion protective materials, Prog. Polym. Sci., 68, 173(2010)
doi: 10.1016/j.porgcoat.2010.02.007
6 V. I. Loganina, E. E. Simonov, W. Jezierski, D. Małaszkiewicz, Application of activated diatomite for dry lime mixes, Constr. Build. Mater., 65, 29(2014)
doi: 10.1016/j.conbuildmat.2014.04.098
7 H. Liang, S. Zhou, Y. Chen, F. Zhou, C. Yan.Diatomite coated with Fe2O3 as an efficient heterogeneous catalyst for degradation of organic pollutant, J. Taiwan Inst. Chem. Eng., 49, 105(2015)
doi: 10.1016/j.jtice.2014.11.002
8 Z. Sun, Z. Hu, Y. Yan, S. Zheng, Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts, Appl. Surf. Sci., 314, 251(2014)
doi: 10.1016/j.apsusc.2014.06.171
9 B. Wang, F. C. Godoi, Z. Sun, Q. Zeng, S. Zheng, R. Frost, Synthesis, characterization and activity of an immobilized photocatalyst:Natural porous diatomite supported titania nanoparticles, J. Colloid Interf. Sci., 438, 204(2015)
doi: 10.1016/j.jcis.2014.09.064 pmid: 25454443
10 C. Shi, A. F. Jiménez, A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cement Concrete Res., 41, 750(2011)
doi: 10.1016/j.cemconres.2011.03.016
11 E. M. Gartner, D. E. Macphee, A physico-chemical basis for novel cementitious binders, Cement Concrete Res., 41, 736(2011)
doi: 10.1016/j.cemconres.2011.03.006
12 L. Wang, Y. Wang, A. Wang, X. Li, F. Zhou, Y. Hu, Highly acidic mesoporous aluminosilicates assembled from zeolitic subunits generated by controllable desilication of ZSM-5 in Na2SiO3 solution, Micro. Mes. Mater., 180, 242(2013)
doi: 10.1016/j.micromeso.2013.06.029
13 Y. J. Zhang, Y. Zhao, H. Li, D. L. Xu, Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci., 43, 7141(2008)
doi: 10.1007/s10853-008-3028-9
14 J. Leivo, M. Lindén, M. Ritola, Influence of thermal treatment conditions on the formation of phase-pure mullite derived from a nanoparticulate aluminosilicate precursor, Mater. Chem. Phys., 115, 56(2009)
doi: 10.1016/j.matchemphys.2008.11.018
15 W. C. Gu, G. Lv, H. Chen, G. Chen, W. Feng, G. Zhang, S. Yang,Investigation of morphology and composition of plasma electrolytic oxidation materials in systems of Na2SiO3-NaOH and (NaPO3)6-NaOH, J. Mater. Pro. Technol., 182, 28(2007)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!