Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (1): 63-67    DOI: 10.11901/1005.3093.2015.406
Orginal Article Current Issue | Archive | Adv Search |
Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries
ZHANG Juan1, CHEN Xiujuan2,**(), ZHANG Penglin1
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries. Chinese Journal of Materials Research, 2016, 30(1): 63-67.

Download:  HTML  PDF(2329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Flower-like nanostructured SnS2 was synthesized by polyethylene glycol octylphenol ether(Triton X-100)-assisted hydrothermal method, the effect of the amount of surfactant Triton X-100 on the ingredient, morphology and electrochemical properties of the synthesized product was studied. Results show that the product is single-phase SnS2 with crystal structure of hexagonal CdI2. The Triton X-100 plays a dominative role in controlling the morphology of SnS2. With a dosage of 0.5 mL Triton X-100 the synthesized SnS2 possesses the highest degree of crystallinity with a fully flower-like morphology . A rechargeable Li-ion batteries with the as-prepared flowerlike nanostructured SnS2 as anode exhibits excellent electrochemical performance with high initial discharge specific capacity 1598 mAhg-1 and reversible capacity 656 mAhg-1 respectively, in a voltage range of 0.01-1.2 V and a rate of 0.15C. After 50 cycles with a rate of 0.15C, the specific capacities retain 572 mAhg-1 and capacity retention rate can reach 87.2%.

Key words:  synthesizing and processing technics      Triton X-100      hydrothermal method      flower-like SnS2 nanostructure      electrochemical properties     
Received:  15 July 2015     
Fund: *Supported by National Natural Science Foundation of China No.51161012
About author:  **To whom correspondence should be addressed, Tel:(0931)2973562, E-mail: chxj305@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.406     OR     https://www.cjmr.org/EN/Y2016/V30/I1/63

Fig.1  XRD patterns of the as-prepared samples with Triton X-100
Fig.2  EDS patterns of the as-prepared samples with 0.5 mL Triton X-100
Fig.3  SEM images of the as-prepared samples with Triton X100 (a) 0 mL, (b) 0.5 mL, (c) a single pattern structure of 0.5 mL, (d) local pattern structure of 0.5 mL, (e) 1 mL, (f) 2 mL
Fig.4  Charge-discharge curves of the as-prepared samples with Triton X-100 at a current density of about 100 mAhg-1(0.15 C)
Fig.5  Cyclic behavior of the as-prepared samples electrodes with Triton X-100 at a current density of about 100 mAhg-1(0.15 C)
1 Y. Wang, G. Z. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater., 20(12), 2251(2008)
2 XU Yanhui, The negative-electrode material electrochemistry for the Li-ion battery, Rare Metal Materials and Engineering, 33(1), 1(2004)
(徐艳辉, 二次锂电池负极材料电化学, 稀有金属材料与工程, 33(1), 1(2004))
3 F. Caruso, R. A. Caruso, H. Mohwald, Nano engineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282(5391), 1111(1998)
4 Jung-wook Seo, Jung-tak Y. Jang, Seung-won Park, Jinwoo Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater., 20(22), 4269(2008)
5 Y. Yu, L. Gu, C.L. Wang, Abirami Dhanabalan, Peter A van Aken, Joachim Maier, Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in 1ithium-based batteries, Angew. Chem. Int., 48(35), 6485(2009)
6 Y. Q. Zou, Y. Wang, Sn@CNT nanostructures rooted in grapheme with high and fast Li-storage capacities, ACS Nano, 5(10), 8108(2011)
7 Chitta R. Patra, Ayelet Odani, Vilas G. Pol, Doron Aurbach, Aharon Gedanken, Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials, Solid State Electrochem, 11(2), 186(2007)
8 H. J. Geng, Y. J. Su, H. Wei, M. H. Xu, L. M. Wei, Z. Yang, Y. F. Zhang, Controllable synthesis and photoelectric property of hexagonal SnS2 nanoflakes by Triton X-100 assisted hydrothermal method, Materials Letters, 111, 204(2013)
9 Tae-Joon Kim, Chunjoong Kim, Dongyeon Son, Myungsuk Choi, Byungwoo Park, Novel SnS2-nanosheet anodes for lithium-ion batteries, Power Sources, 167(2), 529(2007)
10 X. L. Gou, J. Chen, W. Shen, Synthsis, characterization and application of SnSx(x=1, 2) nanoparticles, Materials Chemistry and Physics, 93, 557(2005)
11 S. Liu, X. M.Yin L. B. Chen, Q. L. Li, T. H. Wang, Synthesis of self-assembled 3D flower-like SnS2 nanostructures with enhanced lithium ion storage property, Solid State Sci, 12(5), 712(2010)
12 W. Shi, B. G. Lu, Nanoscale kirkendall effect synthesis of echinus-like SnO2@SnS2 nanospheres as high performance anode material for lithium ion batteries, Electrochimica Acta, 133, 247(2014)
13 C. F. Shen, L.Y. Ma, M. B. Zheng, B. Zhao, Synthesis and electrochemical properties of graphene-SnS2 nanocomposites for lithium-ion batteries, Solid State Electrochem, 16(5), 1999(2012)
14 Q. Q. Zhang, R. Li, M. M. Zhang, B. L. Zhang, X. L. Gou, SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance, Electrochimica Acta, 115, 425(2014)
15 ZHOU Chao, GAO Yanmin, WANG Dan, HAN Lian, FENG Qing, Influence of surfactant PVP and CTAB synergistic effect on the preparation of Cu2ZnSnS4 (CZTS) particles, Chinese Journal of Materials Research, 27(5), 515(2013)
(周超, 高延敏, 王丹, 韩莲, 冯清, 表面活性剂PVP、CTAB协同效应对制备Cu2ZnSnS4微粒的影响, 材料研究学报, 27(5), 515(2013))
16 ZHANG Jinzhong, WANG Zhonglin, LIU Jun, CHEN Shaowei, LIU Gangyu, Self-Assembled Nanostructures, (Beijing, Chemical Industry Press, 2005) p. 10
(张金中, 王中林, 刘俊, 陈少伟, 刘刚玉, 自组装纳米结构, (北京, 化学工业出版社, 2005) p.10)
17 J. Morales, C. Perez-Vicente, J. L. Tirado, Chemical and electrochemical lithium intercalation and staging in 2H-SnS2, Solid State Ionics, 51(3-4), 133(1992)
18 C. Julien, C. Perez-Vicente, Vibrational studies of lithium-intercalated SnS2 , Solid State Ionics, 89(3-4), 337(1996)
[1] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[2] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[5] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[6] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[7] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[8] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[9] WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials[J]. 材料研究学报, 2020, 34(4): 277-284.
[10] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[11] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[12] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[13] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[14] Qingmin WEI,Xiuying LI,Shihua XU,Guocong LIU,Guobao HUANG,Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors[J]. 材料研究学报, 2019, 33(5): 394-400.
[15] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
No Suggested Reading articles found!