Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 620-626    DOI: 10.11901/1005.3093.2015.304
Orginal Article Current Issue | Archive | Adv Search |
Effect of Ultra-Fast Cooling on Microstructure and Performance of Thick X80 Pipeline Steel
NIU Tao1,*, WU Xinlang2, AN Chenggang1, JIANG Yongwen1, ZHANG Caixia2, YU Chen2, DAI Xiaoli1
1. Shougang Research Institute of Technology, Beijing 100043, China
2. Shougang Qian'an Iron &Steel Co. Ltd, Qian'an 064404, China
Cite this article: 

NIU Tao, WU Xinlang, AN Chenggang, JIANG Yongwen, ZHANG Caixia, YU Chen, DAI Xiaoli. Effect of Ultra-Fast Cooling on Microstructure and Performance of Thick X80 Pipeline Steel. Chinese Journal of Materials Research, 2016, 30(8): 620-626.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dynamic phase transformation behavior and CCT curves of 22 mm thick X80 pipeline steel were investigated using Gleeble simulator. Comparative analysis of microstructure, mechanical properties and precipitation behavior was carried out for the steel cooled by different ways. Results reveal that even under cooling rate of 40℃/s, the microstructure still consists of mainly the refined lath bainite (LB), while the end phase of transformation temperature reaches about 400℃. The strength of coil increases without obvious change in toughness due to ultra fast cooling. The proportion of Quasi-polygnoal ferrite (QF) reduces as well as M/A island, while that of lath bainite (LB) rises instead. Precipitation of Nb(C, N) has been inhibited by ultra fast cooling after rolling, which increases the proportion of precipitate in α-Fe with more refined particle size and promotes the precipitation strengthening effect.

Key words:  metallic materials      pipeline steel      ultra-fast cooling      phase transformation      microstructure      M/A island      precipitation     
Received:  12 October 2015     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.304     OR     https://www.cjmr.org/EN/Y2016/V30/I8/620

C Mn Nb Mo Others Ceq Pcm
≤0.06 1.75 0.06~0.09 0.15~0.25 Cu、Ni、Cr 0.44 0.18
Table 1  Chemical composition of X80 pipeline steel (mas fraction, %)
Fig.1  Process of dynamic CCT experiment
Fig.2  Microstructures obtained with different cooling rates (a) 0.5℃/s; (b) 10℃/s; (c) 20℃/s; (d) 40℃/s
Fig.3  Continuous cooling transformation curves
Rt0.5/MPa Rm/MPa Y/T A50.8/% Cvn /J
(-20℃)
DWTT /%
(-15℃)
1#--Laminar cooling 556 698 0.80 22.2 387 100
2#--Super fast cooling+laminar cooling 585 712 0.82 22.4 363 100
Table 2  Mechanical properties of X80 pipeline steel produced with different cooling technology
Fig.4  Microstructures obtained with different cooling process (a), (b) laminar cooling; (c), (d) Super fast cooling
Fig.5  M/A island morphology obtained with different cooling process (a) laminar cooling; (b) Super fast cooling
Fig.6  Precipitation particles obtained with different cooling process (a), (b) laminar cooling; (c), (d) Super fast cooling
1 JIANG Min, ZHI Yuming, LIU Weidong, PANG Wei, LU Xionggang, ZHONG Qingdong, LI Chonghe, Status and development of pipe line steel in China, Shanghai Metals, 31(6), 42(2009)
(姜敏, 支玉明, 刘卫东, 庞威, 鲁雄刚, 钟庆东, 李重河, 我国管线钢的研发现状和发展趋势, 上海金属, 31(6), 42(2009))
doi: 10.3969/j.issn.1001-7208.2009.06.010
2 ZHANG Shuai, REN Yi, WANG Shuang, LIU Wenyue, GAO Hong, Experimental investigation on the alloy reduction of pipeline steel with high strength and heavy section, Shanghai Metals, 36(4), 1(2014)
(张帅, 任毅, 王爽, 刘文月, 高红, 高强度大壁厚管线钢合金减量化试验研究, 上海金属, 36(4), 1(2014))
doi: 10.3969/j.issn.1001-7208.2014.04.001
3 Fujibayashi A, Omata K, JFE Steels advanced manufacturing technologies for high performance steel plates, JFE Technical Report, 5, 10(2005)
4 ZHOU Xiaoguang, WANG Meng, LIU Zhenyu, WU Di, WANG Guodong, Effect of ultra fast cooling on microstructure and properties of X70 pipeline steel, Transactions of Materals and Heat Treatment, 34(9), 80(2013)
(周晓光, 王猛, 刘振宇, 吴迪, 王国栋, 超快冷对X70管线钢组织和性能的影响, 材料热处理学报, 34(9), 80(2013))
5 CHEN Yulai, ZHANG Dongbin, YU Wei, GUO Jin, Influence of ultra-fast cooling on the microstructure of X70 pipeline steel, Journal of University of Science and Technology Beijing, 35(2), 184(2013)
(陈雨来, 张栋斌, 余伟, 郭锦, 超快冷工艺对X70管线钢组织的影响, 北京科技大学学报, 35(2), 184(2013))
6 XIAO Baoliang, XU Yunbo, LI Zhijie, ZHANG Fusheng, WANG Guodong, Effects of high temperature large deformation and ultra fast cooling process on microstructure and mechanical properties of X70 pipeline steel, Journal of Iron and Steel Research, 23(3), 39(2011)
(肖宝亮, 徐云波, 李智杰, 张福生, 王国栋, “高温大变形+超快冷”工艺对X70管线钢组织性能的影响, 钢铁研究学报, 23(3), 39(2011))
7 ZHOU Xiaoguang, LIU Zhenyu, WU Di, WANG Guodong, Effects of ultra fast cooling ending temperature on microstructure and mechanical properties of X80 pipeline steel, Materials for Mechanical Engineering, 36(10), 5(2012)
(周晓光, 刘振宇, 吴迪, 王国栋, 超快速冷却终止温度对X80管线钢组织和性能的影响, 机械工程材料, 36(10), 5(2012))
8 KONG Junhua, Research on processing, microstructure and properties of X80 high grade pipeline steel, PhD Dissertation, Huazhong University of Science and Technology, 2005
(孔君华, 高钢级X80管线钢工艺、组织与性能的研究, 博士学位论文, 华中科技大学, 2005)
doi: 10.7666/d.d009972
9 SONG Weixi, Metallography(Beijing, Metallurgy Industry Press, 2007) p.369
(宋维锡, 金属学(北京, 冶金工业出版社, 2007)p.369)
10 ZHOU Leyu, Research on Flexible Control of Microstructure and Properties of High Strength Nb Bearing Hot-Rolled Dual Phase Steel, PhD Dissertation, University of Science and Technology Beijing, 2008
(周乐育, 高强度含铌热轧双相钢组织性能柔性控制研究, 博士学位论文, 北京, 北京科技大学, 2008)
11 Zhu Guo-sen, Niu Tao, Li Shao-po, Chen Yan-qing, Research on key technology of pipeline steel-Shougang Group, The 13th China-Japan Symposium on Science and Technology of Iron and Steel, 192(2013)
12 LONG Mingjian, Research and Control on Microstructure and Property of X70 Pipeline Steel Produced by Steckel Mill, Master Dissertation, University of Science and Technology Beijing, 2009
(龙明建, 炉卷轧机生产X70管线钢的组织性能控制, 硕士学位论文, 北京, 北京科技大学, 2009)
doi: 10.3969/j.issn.1674-3644.2009.06.005
13 LIAO Bo, XIAO Furen, Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel, Transactions of Materials and Heat Treatment, 30(2), 57(2009)
(廖波, 肖福仁, 针状铁素体管线钢组织及强韧化机理研究, 材料热处理学报, 30(2), 57(2009))
14 XU XueLi, XIN Xixian, ShI Kai, ZHOU Yong, Effects of welding thermal cycle on toughness and microstructure of coarse grained region of X80 pipeline steel, Transactions of the China Welding Institution, 26(8), 70(2005)
(徐学利, 辛希贤, 石凯, 周勇, 焊接热循环对X80管线钢粗晶区韧性和组织的影响, 焊接学报, 26(8), 70(2005))
doi: 10.3321/j.issn:0253-360X.2005.08.018
15 ZHOU Xiaoguang, WANG Meng, LIU Zhenyu, YANG Hao, WU Di, WANG Guodong, Precipitation and models at ferrite phase zone for niobium bearing steel under ultra fast cooling condition, Journal of Material Engineering, 9, 1(2014)
(周晓光, 王猛, 刘振宇, 杨浩, 吴迪, 王国栋, 超快冷条件下含Nb钢铁素体相变区析出及模型研究, 材料工程, 9, 1(2014))
doi: 10.11868/j.issn.1001-4381.2014.09.001
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!