Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 87-94    DOI: 10.11901/1005.3093.2015.022
Orginal Article Current Issue | Archive | Adv Search |
Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy
DENG Yunlai1,2,**(), WANG Yafeng1,2, LIN Huaqiang1,3, YE Lingying1,2, LIU Shengdan1,2, TAN Qian1,2, ZHANG Xinming1,2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China
3. National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co., Ltd., Qingdao 266111, China
Cite this article: 

DENG Yunlai, WANG Yafeng, LIN Huaqiang, YE Lingying, LIU Shengdan, TAN Qian, ZHANG Xinming. Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy. Chinese Journal of Materials Research, 2016, 30(2): 87-94.

Download:  HTML  PDF(10001KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of extrusion temperature on the tensile properties and fracture toughness of an Al-Zn-Mg alloy was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, tensile tests and Kahn tear tests. The results showed that after extrusion the alloy possesses a surface layer composed of fine equiaxed grains with higher toughness in the L-T orientation than that of its center layer, which composed of fiber-like texture and recrystallized grains, while the tensile strength of the center layer is higher than that of the surface layer. When the extrusion temperature increases from 440-450℃ to 480-490℃, the dynamic recrystallization becomes more serious, and the tensile properties and fracture toughness become lower and higher respectively. After aging the precipitates in grains become smaller and the precipitates at grain boundaries are coarsening and discontinuous. Taking the central layer for example, the volume fraction of recrystallized grains increases from 14.8% to 52.3%, correspondingly σ0.2 increases from 280 MPa to 314 MPa, while UIE decrease from 229 Nmm-1 to 204 Nmm-1.

Key words:  metallic materials      extrusion temperature      Al-Zn-Mg alloy      tensile properties      fracture toughness     
Received:  13 January 2015     
ZTFLH:  TG146  
Fund: *Supported by the National Basic Research Program of China No. 2012CB619500.
About author:  **To whom correspondence should be addressed, Tel: 15200801800, Email: luckdeng@csu.edu.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.022     OR     https://www.cjmr.org/EN/Y2016/V30/I2/87

T1 /℃ T2 /℃ T3 /℃ V /mmin-1
A 440-450 430 440 2
B 480-490 470 480 2
Table 1  Extrusion processes parameters of Al-Zn-Mg alloy
T/℃ σb/MPa σ0.2/MPa δ/% UIE/Nmm-1
440-450 SL 332 265 10.6 250
CL 346 280 8.6 229
480-490 SL 356 300 9.7 228
CL 371 314 9.1 204
Table 2  Mechanical properties of Al-Zn-Mg alloy
Fig.1  Optical micrographs at surface layer and center layer extruded at different temperatures (a) 440-450℃, SL; (b) 480-490℃, SL; (c) 440-450℃, CL; (d) 480-490℃, CL
Fig.2  EBSD of Al-Zn-Mg alloy at surface layer and center layer extruded at different temperatures (a) 440-450℃, SL; (b) 480-490℃, SL; (c) 440-450℃, CL; (d) 480-490℃, CL
Fig.3  Recrystallization statistical figure of Al-Zn-Mg alloy at surface layer and center layer extruded at different temperatures
Fig.4  SEM images of Al-Zn-Mg alloy extruded at different temperatures (a) (b) 440-450℃; (c) (d) 480-490℃
Point %
Al Zn Mg Fe Si Cr Mn
A 92.96 1.39 2.11 1.58 0.92 0.22 0.82
B 93.97 3.07 2.97
Table 4  EDX results of second phase particles of Al-Zn-Mg alloy
T/℃ Conductivity /%IACS
440-450 32.9
480-490 32.3
Table 5  Conductivity of Al-Zn-Mg alloy at different extrusion temperatures
Fig.5  SEM images of fracture surfaces of Al-Zn-Mg alloy extruded at different temperatures (a) 440-450℃, SL; (b) 480-490℃, SL; (c) 440-450℃, CL; (d) 480-490℃, CL
Fig.6  TEM images of Al-Zn-Mg alloy at surface layer and center layer extruded at 440-450℃ and corresponding SAD pattern (a), (b) SL; (c), (d) CL
Fig.7  TEM images Al-Zn-Mg alloy at surface layer and center layer extruded at 480-490℃and corresponding SAD pattern (a), (b) SL; (c), (d) CL
1 D. Marchive, P. Faivre, Medium-strength extrusion alloysin the 6000 series (partⅡ), Light Metal Age, 41(6), 14(1983)
2 SHI Feng, WANG Yu, YE Pengfei, LIU Liying, Effect of aging system on properties of A7N01 aluminum profiles for rail body, Aluminum Fabrication, 196(5), 29(2010)
(石峰, 王煜, 叶朋飞, 刘丽英, 时效制度对A7N01铝合金车体型材性能的影响, 铝加工, 196(5), 29(2010))
3 ZHANG Zhanling, QIU Ranfeng, DU Yile, LI Chenyang, HENG Zhonghao, Aluminum alloy applications and its welding technique for railway vehicle in Japan, Electric Welding Machine, 41(11), 11(2011)
(张占领, 邱然锋, 杜宜乐, 李臣阳, 衡中皓, 铝合金在日本轨道车辆的应用及相应焊接技术, 电焊机, 41(11), 11(2011))
4 WANG Zhenan, WANG Mingpu, LI Zhou, YANG Wenchao, XIAO Congwen, Heat treatment characteristic of 7005 Al alloy employed in railway train, The Chinese Journal of Nonferrous Metals, 20(6), 1110(2010)
(王正安, 汪明朴, 李周, 杨文超, 肖从文, 轨道交通车辆大型用7005铝合金的热处理特性, 中国有色金属学报, 20(6), 1110(2010))
5 D. W. Suh, S. Y. Lee, K. H. Lee, S. K. Lim, K. H. Oh, Microstructural evolution of Al-Zn-Mg-Cu-(Sc) alloy during hot extrusion and heat treatments, Journal of Materials Processing Technology, 155, 1330(2004)
6 T. S. Shih, Q. Y. Chung, Fatigue of as-extruded 7005 aluminum alloy, Materials Science and Engineering A, 348, 333(2003)
7 M. Chemingui, M. Khitouni, G. Mesmacque, A. W. Kolsi, Effect of heat treatment on plasticity of Al-Zn-Mg alloy: Microstructure evolution and mechanical properties, Physics Procedia, 2, 1167(2009)
8 G. Z. Quan, Y. P. Mao, G. S. Li, W. Q. Lv, Y. wang, J. Zhou, A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves, Computational Materials Science, 55, 65(2012)
9 GUO Hailong, SUN Zhichao, YANG He, Empirical recrystallization model and its application of as-extrudedaluminum alloy 7075, The Chinese Journal of Nonferrous Metals, 23(6), 107(2013)
(郭海龙, 孙志超, 杨合, 挤压态7075铝合金再结晶经验模型及应用, 中国有色金属学报, 23(6), 107(2013))
10 DENG Bo, ZHONG Yi, QI Xianrong, ZHONG Huarong, ZHANG Jiatao, Experiment on high speed reverse-extrusion of 7N01 aluminum alloy, Yunnan Metallugy, 35(6), 50(2006)
(邓波, 钟毅, 起华荣, 钟华荣, 张家涛, 7N01铝合金高速反向挤压实验研究, 云南冶金, 35(6), 50(2006))
11 Fan Xigang, Study on the microstructures and mechanical properties and the fracture behavior of the Al-Zn-Mg-Cu-Zr alloys, Doctor's Thesis,Harbin Institute of Technology, (2007)
(樊喜刚, Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究, 博士学位论文,哈尔滨工业大学(2007))
12 YAN Liangmin, WANG Zhiqian, SHEN Jian, LI Zhoubing, LI Junpeng, MAO baiping, Research status and expectation of 7055 aluminium alloy, Materials Review, 23(9), 69(2009)
(闫亮明, 王志强, 沈健, 李周兵, 李俊鹏, 毛柏平, 7055铝合金的研究现状及展望, 材料导报, 23(9), 69(2009))
13 C. Mahmoud, K. Mohamed, K. Jozwiak, G. Mesmacque, A. Kolsi, Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70º and 135º, Materials and Desigh, 31, 3134(2010)
14 Dumont D, Deschamps A, Brechet Y, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Materials Science and Engineering: A, 356(1-2), 326(2003)
15 Zhang Shenghua, Qin Yexia, Study on the coarse-grain forming mechanisms in extruded aluminium alloy products, Aluminum Fabrication, 24(2), 29(2001)
(张胜华, 覃业霞, 铝合金挤压制品粗晶环形成机理研究, 铝加工, 24(2), 29(2001))
16 A. Deschamps, G. Texier, S. Ringeval, L. delfaut-Durut, Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy, Materials Science and Engineering: A, 501(1-2), 133(2009)
17 Gür C H, Yıldız İ, Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy, Materials Science and Engineering: A, 382(1-2), 395(2004)
18 T. Ogura, T. Otani, A. Hirose, T. sato, Improvement of strength and ductility of an Al-Zn-Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition, Materials Science and Engineering: A, 580(0), 288(2013)
19 HAN Nianmei, ZHANG Xinming, LIU Shengdan, LU Yanhong, HE Daoguang, ZHANG Rong, Effects of interrupt aging on strength and fracture toughness of 7050 aluminum alloy, The Chinese Journal of Nonferrous Metals, 43(9), 3363(2012)
(韩念梅, 张新明, 刘胜胆, 陆艳红, 何道广, 张荣, 断续时效对7050铝合金强度和断裂韧性的影响, 中国有色金属学报, 43(9), 3363(2012))
20 Peters J O, Gysler A, Lutjring G, Influence of variable amplitude loading on fatigue crack propagation of Al 7475, Proceedings of 6th International Conference on Aluminum Alloys, ICAA6, Toyohashi, Japan, 1427-1432(1998)
21 Kim I B, Park Y S, Kim I G, Effects of silicon and chromium on the fatigue properties of Al-Zn-Mg-Cu cast alloy, Materials Science Forum, 449, 617(2004)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!