Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (7): 496-504    DOI: 10.11901/1005.3093.2014.795
Current Issue | Archive | Adv Search |
Hot Deformation of Spray-Formed Nb-Containing High Speed Steel—A Study Using Processing Map
Lin LU1,Longgang HOU1,**(),Hebin WANG1,Jinxiang ZHANG1,Hua CUI1,Jinfeng HUANG1,Yongan ZHANG2,Jishan ZHANG1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2. State Key Laboratory of Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals, Beijing 100088, China
Cite this article: 

Lin LU,Longgang HOU,Hebin WANG,Jinxiang ZHANG,Hua CUI,Jinfeng HUANG,Yongan ZHANG,Jishan ZHANG. Hot Deformation of Spray-Formed Nb-Containing High Speed Steel—A Study Using Processing Map. Chinese Journal of Materials Research, 2015, 29(7): 496-504.

Download:  HTML  PDF(8048KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior of as spray-formed Nb-containing AISI M3: 2 high speed steel has been investigated by compression tests at a temperature range of 950-1150℃ and a strain range of 0.001-10 s-1 with 50% reduction. Processing maps were developed according to the principles of Dynamic Material Model. It was found that the flow curves assumed the classic shape of dynamic recrystallization (DRX)-rising to a peak, following a softening to a steady state. The hot working process of the steel can be carried out safely in the domain of (Td: 1050-1150℃, : 0.01-0.1 s-1). To obtain microstructures of the steel with fine grains and uniform distribution of fine granular carbides, the hot working process should be carried out at 1150℃ and strain rate of 0.1 s-1. The flow instability took place when strain rates exceed 1 s-1. After a proper hot working and heat treatment, the hardness and bending strength of the spray-formed Nb-containing M3:2 high speed steel is 67 HRC and 3467 MPa, respectively.

Key words:  metal materials      spray forming      high speed steel      hot deformation      processing map      niobium     
Received:  31 December 2014     
Fund: *Supported by National Basic Research Program of China No. 2011CB606303.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.795     OR     https://www.cjmr.org/EN/Y2015/V29/I7/496

Fig.1  As-deposited microstructures of spray-formed high speed steel
Fig.2  Hot deformation flow curves of spray-formed high speed steel at 950℃ (a) and 1150℃ (b) with different strain rates
Fig.3  Relationships between lnσ -lnε? (a) and lnσ -1 T (b) at ε =0.6
Fig.4  Processing map of spray-formed high speed steel at ε =0.6. The numbers associated with the contours indicate efficiency of power dissipation in percent and the shaded areas indicate the unstable regions
Fig.5  Microstructures of spray-formed Nb-containing high speed steels deformed at 950℃, 1 s-1(a), 950℃, 10 s-1(b), 1050℃, 10 s-1 (c), 1150℃, 10 s-1(d)
Fig.6  Microstructures of spray-formed Nb-containing high speed steels deformed at 1050℃, 0.1 s-1 (a), 1150℃, 0.1 s-1 (b), 1150℃, 0.01 s-1 (c)
Fig.7  Microstructures of spray-formed Nb-containing high speed steels deformed at 0.1 s-1 (a) 950℃, (b) 1000℃
Fig.8  Microstructures of spray-formed Nb-containing high speed steel deformed at strain rate 0.001 s-1 (a) 1050℃, (b) 1100℃, (c) 1150℃
Fig.9  As-forged microstructures of spray-formed Nb-containing high speed steel. (a) cross-section, (b) longitudinal section
Steel Hardness/HRC Bend strength/MPa Impact toughness/J
SFM3:2 67.0 3467.6 20.98
Sintering ASP23[28] 63-66 2750 -
HIP ASP23[29] 64 3500 32.5-42
Con M3:2[29] 64 2500 -
Table 1  Mechanical properties of spray formed high speed steels
1 SONG Xiaolong, AN Jiru, New Handbook of Metal Materials at Home and Abroad, 2nd Edition, (Beijing, Chemical Industry Press, 2012)
1 (
2 Catalogue thyssen edelstahl service gmbh,GER Pat, G0168/1(1997)
3 P. Beiss,PM(Powder Metallurgy) methods for the production of high speed steels, Met Powder Rep., 38(4), 185(1983)
4 I. C. Ernst, D. Duh,ESP4 and TSP4, a comparison of spray formed with powder metallurgically produced cobalt free high-speed steel of type 6W-5Mo-4V-4Cr, Journal of Materials Science, 39(22), 6831(2004)
5 LI Junchen,PENG Xiaodong, LIU Junwei, YANG Yan, ZENG Li, Deformation behavior of alloy Mg-9Li-3Al-2.5Sr at elevated temperature, Chinese Journal of Materials Research, 26(3), 309(2012)
5 (李俊辰, 彭晓东, 刘军威, 杨 艳, 曾利,Mg-9Li-3Al-2.5Sr 合金的热变形行为, 材料研究学报, 26(3), 309(2012))
6 K. P. Rao, Y. V. R. H. Prasad, K. Suresh,Anisotropy of flow during isothermal forging of rolled AZ31B magnesium alloy rolled plate in three orthogonal directions: Correlation with processing maps, Mater. Sci. Eng., A558, 30(2012)
7 K. Suresh, K. P. Rao, Y. V. R. H. Prasad, N. Hort, K. U. Kainer,Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy, Mater. Sci. Eng., A588, 272(2013)
8 C. Dharmendra, K. P. Rao, F. Zhao, Y. V. R. H. Prasad, N. Hort, K. U. Kainer,Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4 Al magnesium alloy, Mater.Sci.Eng., A606, 11(2014)
9 O. Sivakesavam, Y. V. R. H. Prasad,Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression: a study with processing map, Mater. Sci. Eng., A362, 118(2003)
10 N. Srinivasan, Y. V. R. H. Prasad, P. P. Rao,Hot deformation behaviour of Mg-3Al alloy, a study using processing map, Mater. Sci. Eng., A476, 146(2008)
11 T. Zhong, K. P. Rao, Y. V. R. H. Prasad, F. Zhao, M. Gupta,Hot deformation mechanisms, microstructure and texture evolution in extruded AZ31-nano-alumina composite, Mater. Sci. Eng., A589, 41(2014)
12 KONG Fantao,CUI Ning, CHEN Yuyong, XIONG Ningning, The hot deformation behavior of Ti-43Al-9V-Y alloy, Acta. Metall. Sin., 49(11), 1363(2012)
12 (孔凡涛, 崔 宁, 陈玉勇, 熊宁宁,Ti-43Al-9V-Y合金的高温变形行为研究, 金属学报, 49(11), 1363(2012))
13 T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, Y.V.R.H. Prasad,Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V, Mater. Sci . Eng., A279(1), 289(2000)
14 F. W. Kang, G. Q. Zhang, Z. Li, J. F. Sun,Hot deformation of spray formed nickel-base superalloy using processing maps, Trans .Nonferrous Met. Soc. China, 18(3), 531(2008)
15 H. R. Ezatpour, S. A. Sajjadi, M. Haddad-sabzevar, G. R. Ebrahimi,Hot deformation and processing maps of K310 cold work tool steel, Mater. Sci . Eng., A550, 152(2012)
16 S. Venugopal, S.L. Mannan, Y. V. R. H. Prasad,Optimization of hot workability in stainless, Metall. Trans., 23A, 3039(1992)
17 G. Meng, B. L. Li, H. M. Li, H. Huang, Z. R. Nie,Hot deformation and processing maps of an Al-5.7 wt.%Mg alloy with erbium, Mater.Sci.Eng., A517, 132(2009)
18 WANG Hebin,ZHANG Jinxiang, LU Lin, HOU Longgang, CUI Hua, HUANG Jinfeng, ZhANG Jishan, High-temperature thermal deformation and microstructure evolution of spray formed M4 high speed steel, Chinese Journal of Materials Research, 27(2), 167(2013)
18 (王和斌, 张金祥, 卢 林, 侯陇刚, 崔 华, 黄进峰, 张济山, 喷射成形M4高速钢的高温热变形及组织演变, 材料研究学报, 27(2), 167(2013))
19 Y. H. Liu, Y. Q. Ning, Z. K. Yao, M.W. Fu,Hot deformation behavior of the 1.15 C-4.00 Cr-3.00 V-6.00 W-5.00 Mo powder metallurgy high speed steel, Mater. Des., 54, 854(2014)
20 Y. V. R. H. Prasad, H. L. Gegel, S. M. Doraivelu, J. C Malas, J. T. Morgan, K. A. Lark, D. R. Barker,Modeling of dynamic material behavior in hot deformation: forging of Ti-6242, Metall. Trans. A, 15, 1883(1984)
21 Y. V. R. H. Prasad,Recent advances in the science of mechanical processing, Indian J. Technol., 28, 435(1990)
22 C. A. C. Imbert, H. J. McQueen,Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation, Mater. Sci. Eng., A313, 88(2001)
23 H. J. McQueen, S. Yue, N. D. Ryan, E. Fry,Hot working characteristics of steels in austenitic state, J. Mater. Process Technol., 53, 293(1995)
24 R. Raj,Development of a processing map for use in warm-forming and hot-forming processes, Metall. Trans. A, 12, 1089(1981)
25 C. Gandhi,On fracture initiation mechanisms and dynamic recrystallization during hot deformation of pure nickel, Metall.Trans. A, 13, 1233(1982)
26 Y. V. R. K. Prasad, T. Seshacharyulu,Modelling of hot deformation for microstructural control, Int. Mater. Rev., 43(6), 243(1998)
27 H. J. McQueen, C. A. C. Imbert,Dynamic recrystallization: plasticity enhancing structural development, J. Alloys Compd., 378(1), 35(2004)
28 YU Yipeng,Study on microstructures and properties of spray formed Nb-containing M3 high speed steel, PhD thesis, University of Science and Technology Beijing, 2012
28 (于一鹏, 喷射成形M3型高速钢组织性能研究,博士论文, 北京科技大学(2012))
29 R. A. Mesquita, C. A. Barbosa,High-speed steels produced by conventional casting, spray forming and powder metallurgy, Mater. Sci. Forum, 498, 244(2005)
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[3] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[4] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[5] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[6] HU Haibo, ZHU Lihui, DUAN Yuanman, WU Xiaochun, GU Bingfu. In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel[J]. 材料研究学报, 2022, 36(5): 365-372.
[7] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[8] YANG Bing, LIU Chunzhong, GAO Enzhi, SUN Wei, LIU Ting, ZHANG Hongning, ZHU Mingwei, LU Tianni. Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures[J]. 材料研究学报, 2022, 36(10): 730-738.
[9] DUAN Yuanman, ZHU Lihui, WU Xiaochun, GU Bingfu. Effect of Deep Cryogenic Treatment Time on Red Hardness of M2 High Speed Steel[J]. 材料研究学报, 2021, 35(1): 17-24.
[10] WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. 材料研究学报, 2020, 34(9): 665-673.
[11] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[12] LI Muze, BAI Chunguang, ZHANG Zhiqiang, ZHAO Jian, XU Dongsheng, WANG Yanfeng. Hot Deformation Behavior of TC2 Titanium Alloy[J]. 材料研究学报, 2020, 34(12): 892-904.
[13] Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG. Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel[J]. 材料研究学报, 2019, 33(4): 313-320.
[14] Yutong YANG,Rui LUO,Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy[J]. 材料研究学报, 2019, 33(3): 232-240.
[15] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
No Suggested Reading articles found!