Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 613-621    DOI: 10.11901/1005.3093.2014.613
Current Issue | Archive | Adv Search |
Shear Properties of Resin Composites Reinforced with Multilayer-connected Biaxial Weft Knitted Fabric of Carbon Fibers
Xiaoyuan PEI1,2,Bo SHANG1,3,Jialu LI1,**(),Li CHEN1,Gang DING4,5
1. Composites Research Institute of Tianjin Polytechnic University & Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin 300387, China
2. School of Material Science and Engineering, Tianjin Polytechnic University & State Key Laboratory of Separation Membranes and Membrane Processes Tianjin Polytechnic University, Tianjin 300387, China
3. Aerospace Shenzhou Aerial Vehicle Ltd., Tianjin 300160, China
4. College of Textile of Tianjin Polytechnic University, Tianjin 300387, China
5. Department of the Management and Construction of Teaching Resources, Tianjin Radio & TV University,Tianjin 300191, China
Cite this article: 

Xiaoyuan PEI,Bo SHANG,Jialu LI,Li CHEN,Gang DING. Shear Properties of Resin Composites Reinforced with Multilayer-connected Biaxial Weft Knitted Fabric of Carbon Fibers. Chinese Journal of Materials Research, 2015, 29(8): 613-621.

Download:  HTML  PDF(2558KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Interlaminar shear properties along directions of 0 ° and 90° of resin composites reinforced with multilayer-connected biaxial weft knitted(MBWK) fabrics of carbon fibers, were investigated by shear test. The test composites involve three, four and five layer-connected MBWK fabrics respectively. It was found that the shear strength increased with the increasing fiber volume fraction. The variation of the interlaminar shear load-deflection curves tended to be linear. When the load reached the maximum value the load-deflection curve dropped suddenly, and the composites showed brittle fracture. The analysis of fracture surface showed that the structure of reinforcement has significant effect on shear properties of MBWK fabrics reinforced composites. The shear failure mode of the composites was delaminating. Meanwhile, the cracking preferred mainly along the delaminating at the interface between the fabric groups.

Key words:  composites      multilayered biaxial weft knitted fabric      polymer matrix composites      shear properties      failure mechanism     
Received:  24 October 2014     
Fund: *Supported by Municipal Science and Technology Commission of Tianjin No. 11ZCKFSF00500 and Application Basis and Front Technology Research Program of Tianjin No. 13JCYBJC16800

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.613     OR     https://www.cjmr.org/EN/Y2015/V29/I8/613

Fig.1  MBWK fabrics interlock structure
Type No. Ply stacking sequence Fiber volume fraction/% in 0° Fiber volume fraction/% in 90° Fiber volume fraction/%
Three layers connection 1# 0/90/0/90 17.1 17.1 34.2
2# 0/90/0/90/0 24.0 20.6 44.6
3# 0/90/0/90/0/90 26.2 26.2 52.4
Four layers connection 4# 0/90/0 17.5 14.2 31.7
5# 0/90/0/90 21.7 21.7 43.4
6# 0/90/0/90/0 28.9 25.4 54.3
Five layers connection 7# 0/90 14.6 14.6 29.2
8# 0/90/0 23.5 19.9 43.4
9# 0/90/0/90 29.4 29.4 58.8
Table 1  Ply stacking sequence of the MBWK fabric composite and the fiber volume fraction (average value)
Curing temperature/℃ 130 150 160 180
Curing time/h 2 1 6 1
Table 2  Rule of cure for the MBWK fabric composite
Fig.2  Load-deflection curves of shear test along the direction of 0° (a) and 90° (b)
Type No. Strength along 0° /MPa Strength along 90° /MPa Load along 0° /kN Load along 90° /kN
Three layers connection 1# 38.5 38.10 1.75 1.73
2# 51.64 48.74 2.38 2.17
3# 56.65 56.87 2.67 2.71
Four layers connection 4# 43.89 42.89 1.90 1.87
5# 52.39 54.15 2.31 2.40
6# 57.33 58.19 2.55 2.59
Five layers connection 7# 48.83 49.18 1.39 1.38
8# 57.55 54.89 2.49 2.12
9# 61.03 58.73 2.37 2.31
Table 3  Results of the shear strength and load of the MBWK fabrics reinforced composites (average value)
Fig.3  Relationship between carbon volume fraction and shear strength of the MBWK fabrics reinforced composites
Fig.4  Fitting curves of the relationship between the shear strength and the carbon fiber volume fraction of MBWK fabrics reinforced composites along the direction 0° (a) and 90° (b)
Type R2 along 0° R2 along 90°
Three layers connection 0.997 0.914
Four layers connection 0.822 0.990
Five layers connection 0.968 0.853
Table 4  Correlation coefficient of the fitting curves between the shear strength and the carbon fiber volume fraction
Fig.5  Longitudinal section of the MBWK fabrics reinforced composites
Fig.6  Shear fracture photographs of the MBWK fabrics reinforced composites with five layer-connected and two layers
Fig.7  Shear fracture photographs of the MBWK fabrics reinforced composites with three layer-connected (a) four groups, (b) five groups, (c) six groups
Source Dependent variable: compression strength in the direction of 0 °
Type III sum of squares df Mean square F P
Corrected model 2222.964a 8 277.870 29.542 0.000
Intercept 120473.166 1 120473.166 12808.294 0.000
Reinforced structure 69.590 1 69.590 7.399 0.010
Fiber volume fraction 1956.263 6 326.044 34.664 0.000
Error 338.611 36 9.406
Total 126279.074 45
Corrected total 2561.575 44
Table 5  Tests between-subjects effects of the shear strength in the direction of 0°
Source Dependent variable: compression strength in the direction of 0 °
Type III sum of squares df Mean square F P
Corrected model 2291.114a 8 286.389 52.404 0.000
Intercept 112583.784 1 112583.784 20600.850 0.000
Reinforced structure 214.091 1 214.091 39.175 0.010
Fiber volume fraction 2209.489 6 368.248 67.383 0.000
Error 196.740 36 5.465
Total 116861.592 45
Corrected total 2487.855 44
Table 6  Tests between-subjects effects of the shear strength in the direction of 90°
1 J. L. Hum, Y. M. Jiang, F. Ko,Modeling uniaxial tensile properties of multiaxial warp knitted fabrics, Text. Res. J., 68(11), 828(1998)
2 V. A. Aan, F. Ko, C. Beevers,Net-shape knitting for complex composite Performs, Text Res J, 73(1), 1(2003)
3 Y. M. Zhang,Y, M Jiang, G. X. Qiu, L. S. Liu, Formability of multi-layered biaxial weft knitted fabrics on double hemisphere, Text. Res. J., 26(3) 54(2005)
4 WANG Wenyan,JIANG Yaming, LIU liangsen, Bending properties of multi-layered biaxial weft knitted fabric reinforced composite, Fiber Reinforced Plastics/Composites, (1), 51(2009)
4 (王文燕, 姜亚明, 刘良森, 纬编双轴向多层衬纱织物增强复合材料的弯曲性能研究, 玻璃钢/复合材料, (1), 51(2009))
5 SHANG Bo,LI Jialu, Compressive experimental investigation of biaxial weft knitted fabric reinforced composites, Knitting Industries, (12), 37(2013)
5 (尚 博, 李嘉禄, 纬编双轴向织物增强复合材料压缩性能研究, 针织工业, (12), 37(2013))
6 XU Yanhua,YUAN Xinlin, Bending properties of Bi-axial weft-knitted basalt fiber fabric reinforced composites of different ways of inserted yar, Acta Materiae Compositae Sinica, 30(2), 233(2013)
6 (徐艳华, 袁新林, 双轴向衬纱纬编玄武岩纤维复合材料弯曲性能, 复合材料学报, 30(2), 233(2013))
7 H. Kong, A. P. Mouritz, R. Paton,Tensile extension properties and deformation mechanisms of multiaxial non-crimp fabrics, Compos. Struct., 66(1), 249(2004)
8 X. K. Li, S. L. Bai, Sheet forming of the multi-layered bi-axial weft knitted fabric reinforcement, Part I: On hemispherical surfaces, Compos., Part A-Appl. S, 40(6), 766(2009)
9 H. B. Dexter, G. H. Hasko,Mechanical properties and damge tolerance of multiaxial warp-kint composites, Compos. Sci. Technol., 56(3), 367(1996)
10 B. Z. Sun, H. Hu, B. H. Gu,Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates, Compos. Struct., 78(1), 84(2007)
11 T. J. Kang, C. Kim,Energy-absorption mechanisms in Kevlar multiaxial warp-knit fabric composites under impact loading, Compos. Sci. Technol., 60(5), 773(2000)
12 LI Long,LI LongDUAN Yuexin, LI Chao, ZHAO Yan, Mechanical properties of Bi-axial warp-knitted fabric T700/BMI6241 composites, Acta Materiae Compositae Sinica, 6(28), 92(2011)
12 (李 龙, 段跃新, 李 超, 肇 研, 双轴向经编织物T700/BMI6421复合材料力学性能, 复合材料学报, 6(28), 92(2011))
13 HAN Shuai, LI Yi, DUAN Yuexin, ZHAO Yan, Mechanical properties of non-crimp stitched carbon fabrics reinforced composites in composites: Innovation and Sustainable Development,(Changsha, Chinese Society for Composite Materials, 2010) p. 525
13 (韩 帅, 韩 帅李 义, 段跃新, 肇 研, 碳纤维经编织物增强复合材料力学性能研究, 复合材料: 创新与可持续发展,(长沙, 中国复合材料学会, 2010) p.525
14 Y. X. Qi, J. L. Li, L. S. Liu,Tensile properties of multilayer-connected biaxial weft knitted fabric reinforced composites for carbon fibers, Mater. Design, 54, 678(2014)
15 L. L. Song, J. L. Li,Effects of heat accelerated aging on tensile strength of three dimensional braided/epoxy resin composites , Polymer compos., 33(9), 1635(2012)
16 W. Fan, J. L. Li,Rapid evaluation of thermal aging of a carbon fiber laminated epoxy composite, Polymer Compos., 35(5), 975(2014)
17 ASTM D2344_D2344M,Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[14] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[15] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
No Suggested Reading articles found!