Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (10): 775-780    DOI: 10.11901/1005.3093.2014.150
Current Issue | Archive | Adv Search |
Compatibility of LiODFB Electrolyte with LiNi0.5Mn1.5O4 as High-voltage Cathode Material
Hongming ZHOU1,2,Wenjun GENG1,Jian LI1,2,**(),Jie YANG2,Shuheng YAO1,Wenjiao SUN1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Hunan Province Zhengyuan Energy Storage Materials and Devices Research, Changsha 410083
Cite this article: 

Hongming ZHOU,Wenjun GENG,Jian LI,Jie YANG,Shuheng YAO,Wenjiao SUN. Compatibility of LiODFB Electrolyte with LiNi0.5Mn1.5O4 as High-voltage Cathode Material. Chinese Journal of Materials Research, 2014, 28(10): 775-780.

Download:  HTML  PDF(1700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compatibility of lithium di?uoro(oxalato)borate (LiODFB) electrolyte with LiNi0.5Mn1.5O4 as high-voltage cathode material was investigated by cyclic voltammetry, charge-discharge test and AC impedance. The results show that the LiNi0.5Mn1.5O4/Li half cells with LiODFB or LiPF6 as electrolyte all have simple REDOX peak at 25℃ and 60℃, and the battery has an excellent reversibility. The battery with LiODFB has better cycle performance than that with LiPF6 at 25℃ and 60℃. Their 0.5C initial discharge specific capacities at 25℃ are 126.3 mAh?g-1 and 131.6 mAh?g-1, and the capacity retention ratios by the 100th cycle are 97.1 % and 94.7% respectively. The 0.5 C initial discharge specific capacities at 60℃are 132.6 mAhg-1 and 129.1 mAhg-1, and capacity retention ratios by the 100th cycle are 94.1% and 81.7% respectively. AC impedance plots also show that the battery with LiODFB has a lower charge-transfer resistance than that with LiPF6 at 60℃, indicating that the battery with LiODFB has excellent cyclic performance at high temperature.

Key words:  foundational discipline in materials science      lithium di?uoro(oxalato)borate      LiNi0.5Mn1.5O4      electrochemical performance      compatibility     
Received:  01 April 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.150     OR     https://www.cjmr.org/EN/Y2014/V28/I10/775

Fig.1  CV curves of LiNi0.5Mn1.5O4/Li cells at 25℃ (a) and 60℃ (b)
Fig.2  Initial charge-discharge curves of LiNi0.5Mn1.5O4/Li cells at 25℃ (a) and 60℃ (b)
Fig.3  Cycle performance of LiNi0.5Mn1.5O4/Li cells at different rates
Fig.4  Cycle performance of LiNi0.5Mn1.5O4/Li batteries at 25℃ (a) and 60℃ (b)
Fig.5  EIS results of LiNi0.5Mn1.5O4/Li cell after and before cycle
Fig.6  Equivalent circuit of AC impedance for electrolyte
Situation RL(LiODFB) RL(LiPF6) Rct(LiODFB) Rct(LiPF6)
25℃ before cycling 12.3 7.7 342.1 305.2
25℃ after cycling 13.6 8.6 380.9 345.7
60℃ before cycling 4.2 22.2 7.3 40.8
60℃ after cycling 7.9 38.2 8.6 67.3
Table 1  Resistance of LiODFB and LiPF6 at different temperatures
Fig.7  SEM images of LiNi0.5Mn1.5O4 electrode from LiNi0.5Mn1.5O4/Li cells after-before cycle, (a) before cycling, (b) LiODFB half cell after 100 cycles at 60℃, (c) LiPF6 half cell after 100 cycles at 60℃
1 LIU Guoqiang, QI Lu, WEN Lei, Synthesis and electrochemical performance of LiNixMn2-xO4 spinel as cathode material for lithium ion batteries, Rare metal materials and Engineering, 35(2), 299(2006)
1 (刘国强, 其鲁, 闻雷,锂离子电池正极材料LiNixMn2-xO4的制备和电化学性能研究, 稀有金属材料与工程, 35(2), 299(2006))
2 YI Tingfeng, YUE Caibo, HE Xiaojun, ZHU Rongsun, HU Xinguo, Review of research on synthesis and properties of LiNi0.5Mn1.5O4, Chinese Battery Industry, 13(4), 262(2008)
2 (伊廷锋, 岳彩波, 何孝军, 诸荣孙, 胡信国, LiNi0.5Mn1.5O4 材料合成及性能的研究综述, 电池工业, 13(4), 262(2008))
3 JI Yong, WANG Zhixing, YIN Zhoulan, GUO Huajun, PENG Wenjie, LI Xinhai, Synthesis and properties of cathode material LiNi0.5Mn1.5O4, Chinese Journal of Inorganic Chemistry, 23(4), 597(2007)
3 (季勇, 王志兴, 尹周澜, 郭华军, 彭文杰, 李新海, 正极材料LiNi0.5Mn1.5O4 的合成及性能, 无机化学学报, 23(4), 597(2007))
4 TANG Zhiyuan, HU Ran, WANG Lei, Research progress on LiNi0.5Mn1.5O4 compound as 5V anode materials for lithium ion batteries, Chemical Industry and Engineering Progress, 25(1), 31(2006))
4 (唐致远, 胡冉, 王雷, 5V 锂离子电池正极材料LiNi0.5Mn1.5O4 的研究进展, 化工进展, 25(1), 31(2006))
5 FANG Haisheng, WANG Zhixing, LI Xinhai, GUO Huajun, PENG Wenjie, Synthesis and property of LiNi0.5Mn1.5O4 for high-voltage lithium ion batteries, Chinese Battery Industry, 11(1), 36(2006)
5 (方海升, 王志兴, 李新海, 郭华军, 彭文杰, 高电压锂离子电池 LiNi0.5Mn1.5O4的合成及性能, 电池工业, 11(1), 36(2006))
6 YANG Xulai, WANG Yang, CAO Hekun, XU Xiaoming, Progress in high-voltage electrolytes for lithium ion batteries, Chinese Journal of Power Sources, 36(8), 1235(2012)
6 (杨续来, 汪 洋, 曹贺坤, 徐小明, 锂离子电池高电压电解液研究进展, 电源技术, 36(8), 1235(2012))
7 TANG Zhiyuan, YANG Guangming, WANG Qian, Research progress in modif ication of LiNi0.5Mn1.5O4 compound as 5V anode materials for lithium ion batteries, Materials Review, 21(6), 35(2007)
7 (唐志远, 杨光明, 王倩, 5V锂离子电池正极材料LiNi0. 5Mn1. 5O4 改性研究现状, 材料导报, 21(6), 35(2007))
8 Sheng Shui Zhang,An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochemistry Communications, 8(9), 1423(2006)
9 M. H. Fu, K. L. Huang, S. Q. Liu, J. S. Liu, Y. K. Li, Lithium di?uoro(oxalato) borate/ethylene carbonate + propylene carbonate + ethyl(methyl)carbonate electrolyte for LiMn2O4 cathode, Journal of Power Sources, 195(11), 862(2010)
10 Sheng Shui Zhang,Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, Journal of Power Sources, 163(7), 713(2007)
11 CUI Xiaoling, LI Shiyou, LUO Jianguo, Research progress in electrolyte lithium salt lithium oxalyldifluoroborate, Battery Bimonthly, 39(4), 233(2009)
11 (崔小玲, 李世友, 骆建国, 电解质锂盐草酸二氟硼酸锂的研究进展, 电池, 39(4), 233(2009))
12 Sheng Shui Zhang, K. Xu, T. R. Jow. Understanding Formation of Solid Electrolyte Interface Film on LiMn2O4 Electrode, Journal of the Electrochemical Society, 149(12), 1521(2002)
13 XIE Hui, TANG Zhiyuan, LI Zhongyan, LiODFB: An unique lithium salt for lithium ion battery, New Chemical Materials, 35(6), 39(2007)
13 (谢辉, 唐致远, 李中延, 可用于锂离子电池的新型锂盐: LiODFB, 化工新型材料, 35(6), 39(2007))
14 DENG Lingfeng, CHEN Hong, Electrochemical properties and synthesis of LiBC2O4F2 for lithium batteries, Chinese Journal of Power Sources, 34(3), 237(2010)
14 (邓凌峰, 陈 洪, 锂离子电池电解质LiBC2O4F2的合成与电化学性能, 电源技术, 34(3), 237(2010))
15 Jie Li, Keyu Xie, Yanqing Lai, Zhi’an Zhang, Fanqun Li, Xin Hao, Xujie Chen, Yexiang Liu, Lithium oxalyldi?uoroborate/carbonate electrolytes for LiFePO4/arti?cial graphite lithium-ion cells, Journal of Power Source, 195(16), 5344(2010)
16 Zhou Hongming, Fang Zhenqi, Li Jian. LiPF6 and lithium difluoro(oxalato) borate/ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode, Journal of Power Sources, 230, 148(2013)
17 FU Maohua, HUANG Kelong, LIU Suqin, LIU Jiansheng, LI Yongkun, Effect of lithium difluoro (oxalato) borate on the high-temperature performance of LiFePO4/Graphite batteries, Acta Physico-Chimica Sinica, 25(10), 1985(2009)
17 (付茂华, 黄可龙, 刘素琴, 刘建生, 李永坤, 二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响, 物理化学学报, 25(10), 1985(2009))
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[5] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[7] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[8] YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. 材料研究学报, 2021, 35(11): 873-880.
[9] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[10] YANG Qin, ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng. Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds[J]. 材料研究学报, 2020, 34(9): 691-696.
[11] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[12] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[13] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[14] Pengfei ZHOU,Peng ZHANG,Yunhui DU,Yujie WANG,Cheng ZUO. Preparation and Electrochemical Properties of Li-rich Cathode Material Prepared by Spray Drying Method[J]. 材料研究学报, 2019, 33(7): 481-487.
[15] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
No Suggested Reading articles found!